Skip to main content

Manifold Discriminative Transfer Learning for Unsupervised Domain Adaptation

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13109))

Included in the following conference series:

  • 1681 Accesses

Abstract

This paper proposes manifold discriminative transfer learning (MDTL) for traditional unsupervised domain adaptation. It first utilizes manifold subspace learning to reconstruct the original data in both source and target domains, which can reduce the domains shifts, then performs simultaneously structural risk minimization, discriminative class level alignment, and manifold regularization for transfer learning. More specifically, it minimizes the intra-class distribution discrepancy to improve the domain transferability, maximizes the inter-class distribution discrepancy to improve the class discriminability, and also maintains geometrical structures of the data samples. Remarkably, MDTL is a traditional transfer learning approach and it has a closed-form solution, so the computational cost is low. Extensive experiments showed that MDTL outperforms several state-of-the-art traditional domain adaptation approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borgwardt, K.M., Gretton, A., Rasch, M.J., Kriegel, H., Scholkopf, B., Smola, A.J.: Integrating structured biological data by kernel maximum mean discrepancy. In: Proceedings 14th International Conference on Intelligent Systems for Molecular Biology, Fortaleza, Brazil, pp. 49–57, August 2006

    Google Scholar 

  2. Chen, X., Wang, S., Long, M., Wang, J.: Transferability vs. discriminability: batch spectral penalization for adversarial domain adaptation. In: Proceedings 36th International Conference on Machine Learning, Long Beach, California, pp. 1081–1090, June 2019

    Google Scholar 

  3. Donahue, J., et al.: DeCAF: a deep convolutional activation feature for generic visual recognition. In: Proceedings International Conference on Machine Learning, Beijing, China, pp. 647–655, June 2014

    Google Scholar 

  4. Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T.: Unsupervised visual domain adaptation using subspace alignment. In: Proceedings IEEE International Conference on Computer Vision, Sydney, Australia, pp. 2960–2967, December 2013

    Google Scholar 

  5. Ghifary, M., Balduzzi, D., Kleijn, W.B., Zhang, M.: Scatter component analysis: a unified framework for domain adaptation and domain generalization. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1414–1430 (2017)

    Google Scholar 

  6. Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, pp. 2066–2073, June 2012

    Google Scholar 

  7. Gopalan, R., Li, R., Chellappa, R.: Domain adaptation for object recognition: an unsupervised approach. In: Proceedings IEEE International Conference on Computer Vision, Barcelona, Spain, pp. 999–1006, November 2011

    Google Scholar 

  8. Hull, J.J.: A database for handwritten text recognition research. IEEE Trans Pattern Anal. Mach. Intell. 16(5), 550–554 (1994)

    Google Scholar 

  9. Kang, G., Jiang, L., Yang, Y., Hauptmann, A.G.: Contrastive adaptation network for unsupervised domain adaptation. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, pp. 4893–4902, June 2019

    Google Scholar 

  10. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  11. Long, M., Wang, J., Ding, G., Pan, S.J., Yu, P.S.: Adaptation regularization: a general framework for transfer learning. IEEE Trans. Knowl. Data Eng. 26(5), 1076–1089 (2014)

    Article  Google Scholar 

  12. Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer feature learning with joint distribution adaptation. In: Proceedings IEEE International Conference on Computer Vision, Sydney, Australia, pp. 2200–2207, December 2013

    Google Scholar 

  13. Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer joint matching for unsupervised domain adaptation. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, pp. 1410–1417, June 2014

    Google Scholar 

  14. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 22(2), 199–210 (2011)

    Article  Google Scholar 

  15. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Google Scholar 

  16. Scholkopf, B., Smola, A.J.: Learning with Kernels: support vector machines, regularization, optimization, and beyond. Adaptive Computation and Machine Learning Series. MIT Press (2002)

    Google Scholar 

  17. Sun, B., Feng, J., Saenko, K.: Return of frustratingly easy domain adaptation. In: Proceedings 30th AAAI Conference on Artificial Intelligence, Phoenix, Arizona, pp. 2058–2065, February 2016

    Google Scholar 

  18. Wang, J., Chen, Y., Hao, S., Feng, W., Shen, Z.: Balanced distribution adaptation for transfer learning. In: Proceedings IEEE International Conference on Data Mining, New Orleans, LA, pp. 1129–1134, November 2017

    Google Scholar 

  19. Wang, J., Feng, W., Chen, Y., Yu, H., Huang, M., Yu, P.S.: Visual domain adaptation with manifold embedded distribution alignment. In: Proceedings ACM International Conference on Multimedia, Seoul, Republic of Korea, pp. 402–410, October 2018

    Google Scholar 

  20. Wu, D., Huang, J.: Affect estimation in 3D space using multi-task active learning for regression. IEEE Trans. Affect. Comput. (2021 in Press)

    Google Scholar 

  21. Wu, D., Xu, Y., Lu, B.L.: Transfer learning for EEG-based brain-computer interfaces: a review of progress made since 2016. IEEE Trans. Cogn. Dev. Syst. (2020, in Press)

    Google Scholar 

  22. Zhang, J., Li, W., Ogunbona, P.: Joint geometrical and statistical alignment for visual domain adaptation. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, pp. 5150–5158, July 2017

    Google Scholar 

  23. Zhang, W., Deng, L., Zhang, L., Wu, D.: Overcoming negative transfer: a survey (2020). https://arxiv.org/abs/2009.00909

  24. Zhang, W., Wu, D.: Discriminative joint probability maximum mean discrepancy (DJP-MMD) for domain adaptation. In: Proceedings International Joint Conference on Neural Networks, Glasgow, UK, pp. 1–8, July 2020

    Google Scholar 

  25. Zhang, Y., Tang, H., Jia, K., Tan, M.: Domain-symmetric networks for adversarial domain adaptation. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, pp. 5031–5040, June 2019

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Hubei Province Funds for Distinguished Young Scholars under Grant 2020CFA050, the Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province under Grant 2020E10010-01, the Technology Innovation Project of Hubei Province of China under Grant 2019AEA171, the National Natural Science Foundation of China under Grants 61873321 and U1913207, and the International Science and Technology Cooperation Program of China under Grant 2017YFE0128300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongrui Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Quan, X., Wu, D., Zhu, M., Xia, K., Deng, L. (2021). Manifold Discriminative Transfer Learning for Unsupervised Domain Adaptation. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13109. Springer, Cham. https://doi.org/10.1007/978-3-030-92270-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92270-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92269-6

  • Online ISBN: 978-3-030-92270-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics