Skip to main content

Training-Free Multi-objective Evolutionary Neural Architecture Search via Neural Tangent Kernel and Number of Linear Regions

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13109))

Included in the following conference series:

Abstract

A newly introduced training-free neural architecture search (TE-NAS) framework suggests that candidate network architectures can be ranked via a combined metric of expressivity and trainability. Expressivity is measured by the number of linear regions in the input space that can be divided by a network. Trainability is assessed based on the condition number of the neural tangent kernel (NTK), which affects the convergence rate of training a network with gradient descent. These two measurements have been found to be correlated with network test accuracy. High-performance architectures can thus be searched for without incurring the intensive cost of network training as in a typical NAS run. In this paper, we suggest that TE-NAS can be incorporated with a multi-objective evolutionary algorithm (MOEA), in which expressivity and trainability are kept separate as two different objectives rather than being combined. We also add the minimization of floating-point operations (FLOPs) as the third objective to be optimized simultaneously. On NAS-Bench-101 and NAS-Bench-201 benchmarks, our approach achieves excellent efficiency in finding Pareto fronts of a wide range of architectures exhibiting optimal trade-offs among network expressivity, trainability, and complexity. Network architectures obtained by our approach on CIFAR-10 also show high transferability on CIFAR-100 and ImageNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arora, S., Du, S.S., Hu, W., Li, Z., Salakhutdinov, R., Wang, R.: On exact computation with an infinitely wide neural net. In: NeurIPS, pp. 8139–8148 (2019)

    Google Scholar 

  2. Chen, W., Gong, X., Wang, Z.: Neural architecture search on ImageNet in four GPU hours: a theoretically inspired perspective. In: ICLR (2021)

    Google Scholar 

  3. Chrabaszcz, P., Loshchilov, I., Hutter, F.: A downsampled variant of ImageNet as an alternative to the CIFAR datasets. CoRR abs/1707.08819 (2017)

    Google Scholar 

  4. Chu, X., Zhang, B., Xu, R., Li, J.: FairNAS: rethinking evaluation fairness of weight sharing neural architecture search. CoRR abs/1907.01845 (2019)

    Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  6. Do, T., Luong, N.H.: Insightful and practical multi-objective convolutional neural network architecture search with evolutionary algorithms. In: Fujita, H., Selamat, A., Lin, J.C.-W., Ali, M. (eds.) IEA/AIE 2021. LNCS (LNAI), vol. 12798, pp. 473–479. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79457-6_40

    Chapter  Google Scholar 

  7. Dong, X., Liu, L., Musial, K., Gabrys, B.: NATS-bench: benchmarking NAS algorithms for architecture topology and size. IEEE Trans. Pattern Anal. Mach. Intell., 1 (2021)

    Google Scholar 

  8. Dong, X., Yang, Y.: Searching for a robust neural architecture in four GPU hours. In: CVPR, pp. 1761–1770 (2019)

    Google Scholar 

  9. Dong, X., Yang, Y.: NAS-Bench-201: extending the scope of reproducible neural architecture search. In: ICLR (2020)

    Google Scholar 

  10. Du, S.S., Lee, J.D., Li, H., Wang, L., Zhai, X.: Gradient descent finds global minima of deep neural networks. In: ICML, vol. 97, pp. 1675–1685 (2019)

    Google Scholar 

  11. Du, S.S., Zhai, X., Póczos, B., Singh, A.: Gradient descent provably optimizes over-parameterized neural networks. In: ICLR (2019)

    Google Scholar 

  12. Giryes, R., Sapiro, G., Bronstein, A.M.: Deep neural networks with random gaussian weights: a universal classification strategy? IEEE Trans. Signal Process. 64(13), 3444–3457 (2016)

    Article  MathSciNet  Google Scholar 

  13. Guo, Z., et al.: Single path one-shot neural architecture search with uniform sampling. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 544–560. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_32

    Chapter  Google Scholar 

  14. Hanin, B., Nica, M.: Finite depth and width corrections to the neural tangent kernel. In: ICLR (2020)

    Google Scholar 

  15. Hanin, B., Rolnick, D.: Complexity of linear regions in deep networks. In: ICML, vol. 97, pp. 2596–2604 (2019)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  17. Jacot, A., Hongler, C., Gabriel, F.: Neural tangent kernel: convergence and generalization in neural networks. In: NeurIPS, pp. 8580–8589 (2018)

    Google Scholar 

  18. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical report, University of Toronto, Toronto (2009)

    Google Scholar 

  19. Lee, J., et al.: Wide neural networks of any depth evolve as linear models under gradient descent. In: NeurIPS, pp. 8570–8581 (2019)

    Google Scholar 

  20. Li, L., Talwalkar, A.: Random search and reproducibility for neural architecture search. In: UAI, pp. 367–377 (2019)

    Google Scholar 

  21. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In: ICLR (2019)

    Google Scholar 

  22. Lu, Z., et al.: NSGA-Net: neural architecture search using multi-objective genetic algorithm. In: GECCO, pp. 419–427 (2019)

    Google Scholar 

  23. Luo, R., Tian, F., Qin, T., Chen, E., Liu, T.: Neural architecture optimization. In: NeurIPS, pp. 7827–7838 (2018)

    Google Scholar 

  24. Mellor, J., Turner, J., Storkey, A.J., Crowley, E.J.: Neural architecture search without training. In: ICML, vol. 139, pp. 7588–7598 (2021)

    Google Scholar 

  25. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture search via parameter sharing. In: ICML, vol. 80, pp. 4092–4101 (2018)

    Google Scholar 

  26. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. In: AAAI, pp. 4780–4789 (2019)

    Google Scholar 

  27. Wu, B., et al.: FBNet: hardware-aware efficient convnet design via differentiable neural architecture search. In: CVPR, pp. 10734–10742 (2019)

    Google Scholar 

  28. Xiao, L., Pennington, J., Schoenholz, S.: Disentangling trainability and generalization in deep neural networks. In: ICML, vol. 119, pp. 10462–10472 (2020)

    Google Scholar 

  29. Xiong, H., Huang, L., Yu, M., Liu, L., Zhu, F., Shao, L.: On the number of linear regions of convolutional neural networks. In: ICML, vol. 119, pp. 10514–10523 (2020)

    Google Scholar 

  30. Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., Hutter, F.: NAS-Bench-101: towards reproducible neural architecture search. In: ICML, vol. 97, pp. 7105–7114 (2019)

    Google Scholar 

  31. Yu, K., Sciuto, C., Jaggi, M., Musat, C., Salzmann, M.: Evaluating the search phase of neural architecture search. In: ICLR (2020)

    Google Scholar 

  32. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National University HoChiMinh City (VNU-HCM) under grant number DSC2021-26-06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngoc Hoang Luong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Do, T., Luong, N.H. (2021). Training-Free Multi-objective Evolutionary Neural Architecture Search via Neural Tangent Kernel and Number of Linear Regions. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13109. Springer, Cham. https://doi.org/10.1007/978-3-030-92270-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92270-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92269-6

  • Online ISBN: 978-3-030-92270-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics