Skip to main content

FSE: a Powerful Feature Augmentation Technique for Classification Task

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13109))

Included in the following conference series:

  • 1571 Accesses

Abstract

Neural networks are powerful at discovering the hidden relation, such as classifying facial expressions to emotions. The performance of the neural network is typically limited by the number of informative features. In this paper, a novel feature augmentation is proposed for generating new informative features in an unsupervised manner. Current data augmentation focuses on synthesizing new samples according to data distribution. Instead, our approach, Feature Space Expansion (FSE), enriches data feature by providing their distribution information, which brings benefit based on model performance and convergence speed. To the best of our knowledge, FSE is the first feature augmentation method, which is developed based on feature distribution. We evaluate FSE performance on face emotion dataset and music effect dataset. We provide diverse comparisons with different alternative baselines. The experimental results indicate FSE provides significant improvement in model’s prediction accuracy when the number of features in original dataset is relatively small, and less remarkable improvement when the number of features in original dataset is large. In addition, training on FSE augmented training set can have at least ten times faster convergence speed than training on original training set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dhall, A., Goecke, R., Lucey, S., Gedeon, T.: Static facial expressions in tough conditions: data, evaluation protocol and benchmark. In: 1st IEEE International Workshop on Benchmarking Facial Image Analysis Technologies BeFIT, ICCV2011, November 2011

    Google Scholar 

  2. Nejad, A.F., Gedeon, T.D.: Bidirectional neural networks and class prototypes. In: IEEE International Conference on Neural Networks. Proceedings, vol. 3, pp. 1322–1327. IEEE, November 1995

    Google Scholar 

  3. Zhang, T., Zheng, W., Cui, Z., Zong, Y., Li, Y.: Spatial-Temporal recurrent neural network for emotion recognition. IEEE Trans. Cybern. 49(3), 839–847 (2018)

    Article  Google Scholar 

  4. Liu, Y., Sun, C., Lin, L., Wang, X.: Learning Natural Language Inference using Bidirectional LSTM model and Inner-Attention. arXiv preprint arXiv:1605.09090 (2016)

  5. Hansen, L., Salamon, P.: Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 12(10), 993–1001 (1990)

    Article  Google Scholar 

  6. Shanker, M., Hu, M.Y., Hung, M.S.: Effect of data standardization on neural network training. Omega 24(4), 385–397 (1996)

    Article  Google Scholar 

  7. Wöllmer, M., Metallinou, A., Eyben, F., Schuller, B., Narayanan, S.: Context-sensitive multimodal emotion recognition from speech and facial expression using bidirectional LSTM modeling. In: Proceedings INTERSPEECH 2010, Makuhari, Japan, pp. 2362–2365 (2010)

    Google Scholar 

  8. Lin, C.T., Lee, C.S.G.: Neural-network-based fuzzy logic control and decision system. IEEE Trans. Comput. 40(12), 1320–1336 (1991)

    Article  MathSciNet  Google Scholar 

  9. Ng, H.W., Nguyen, V.D., Vonikakis, V., Winkler, S.: Deep learning for emotion recognition on small datasets using transfer learning. In: Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, pp. 443–449, November 2015

    Google Scholar 

  10. Dai, Z., et al.: CNN descriptor improvement based on L2-normalization and feature pooling for patch classification. In: 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 144–149. IEEE, December 2018

    Google Scholar 

  11. Maulik, U., Saha, I.: Automatic fuzzy clustering using modified differential evolution for image classification. IEEE Trans. Geosci. Remote Sens. 48(9), 3503–3510 (2010)

    Article  Google Scholar 

  12. Cai, W., Chen, S., Zhang, D.: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn. 40(3), 825–838 (2007)

    Article  Google Scholar 

  13. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019)

    Article  Google Scholar 

  14. Perez, L., Wang, J.: The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621 (2017)

  15. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Networks 61, 85–117 (2015)

    Article  Google Scholar 

  16. Xu, Y., Noy, A., Lin, M., Qian, Q., Li, H., Jin, R.: WeMix: How to Better Utilize Data Augmentation. arXiv preprint arXiv:2010.01267 (2020)

  17. Rahman, J.S., Gedeon, T., Caldwell, S., Jones, R.: Brain melody informatics: analysing effects of music on brainwave patterns. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, July 2020

    Google Scholar 

  18. Alashwal, H., El Halaby, M., Crouse, J.J., Abdalla, A., Moustafa, A.A.: The application of unsupervised clustering methods to Alzheimer’s disease. Front. Comput. Neurosci. 13, 31 (2019). https://doi.org/10.3389/fncom.2019.00031

    Article  Google Scholar 

  19. Reynolds, D.A.: Gaussian mixture models. Encycl. Biometrics 741, 659–663 (2009)

    Article  Google Scholar 

  20. Auer, P., Burgsteiner, H., Maass, W.: A learning rule for very simple universal approximators consisting of a single layer of perceptrons. Neural Networks 21(5), 786–795 (2008)

    Article  Google Scholar 

  21. Zell, A.: Simulation neuronaler netze, vol. 1, no. 5.3. Addison-Wesley, Bonn (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaozhong Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Yang, Y., Hossain, M.Z. (2021). FSE: a Powerful Feature Augmentation Technique for Classification Task. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13109. Springer, Cham. https://doi.org/10.1007/978-3-030-92270-2_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92270-2_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92269-6

  • Online ISBN: 978-3-030-92270-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics