Skip to main content

BFConv: Improving Convolutional Neural Networks with Butterfly Convolution

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13111))

Included in the following conference series:

Abstract

Convolutional neural network (CNN) is a basic neural network widely used in vision tasks. Many CNNs alleviate the redundancy in feature maps to reduce model complexity. Inspired by digital signal processing theories, this paper reviews discrete fourier transform (DFT), finding its similarities with standard convolution. In particular, DFT has a fast algorithm called FFT, which sparks our thinking: can we learn from the idea of FFT to realize a more efficient convolution filter? Based on the butterfly operation of FFT, we propose a novel butterfly convolution (BFConv). In addition, we illustrate that group weight sharing convolution is a basic unit of BFConv. Compared with the traditional group convolution structure, BFConv constructs group residual-like connections and increases the range of receptive fields for each sub-feature layer. Without changing the network architecture, we integrate BFConv into ResNet-50, ShuffleNet and VGG-16. Experimental results on CIFAR-10 and ImageNet demonstrate the above BFConv-equipped networks reduce parameters and computation, achieving similar or higher accuracy. Remarkably, when ResNet-50 embedded BFConv reaches nearly half of the compression ratio of the model, it performs favorably against its state-of-the-art competitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)

    Google Scholar 

  2. Xu, Z.-Q.J., Zhang, Y., Xiao, Y.: Training behavior of deep neural network in frequency domain. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. LNCS, vol. 11953, pp. 264–274. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36708-4_22

    Chapter  Google Scholar 

  3. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861 (2017)

  4. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)

    Google Scholar 

  5. Gueguen, L., Sergeev, A., Kadlec, B., Liu, R., Yosinski, J.: Faster neural networks straight from JPEG. In: NeurIPS (2018)

    Google Scholar 

  6. Xu, K., Qin, M., Sun, F., Wang, Y., Chen, Y., Ren, F.: Learning in the frequency domain. In: CVPR (2020)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  8. Zhang, Q., Yang, Y.: SA-Net: shuffle attention for deep convolutional neural networks. In: ICASSP (2021)

    Google Scholar 

  9. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: ECA-Net: efficient channel attention for deep convolutional neural networks. In: CVPR (2020)

    Google Scholar 

  10. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: MobileNetV2: inverted residuals and linear bottlenecks. In: CVPR (2018)

    Google Scholar 

  11. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: CVPR (2018)

    Google Scholar 

  12. Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M.: Searching for MobileNetV3. In: CVPR (2019)

    Google Scholar 

  13. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: CVPR (2017)

    Google Scholar 

  14. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)

    Google Scholar 

  15. Xie, S., Girshick, R., Dollar, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: CVPR (2017)

    Google Scholar 

  16. Singh, P., Verma, V.K., Rai, P., Namboodiri, V.P.: Hetconv: Heterogeneous kernel-based convolutions for deep CNNs. In: CVPR (2019)

    Google Scholar 

  17. Hou, Q., Zhou, D., Feng, J.: Coordinate attention for efficient mobile network design. In: CVPR (2021)

    Google Scholar 

  18. Chen, Y., et al.: Drop an Octave: reducing spatial redundancy in convolutional neural networks with octave convolution. In: ICCV (2019)

    Google Scholar 

  19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NeurIPS (2012)

    Google Scholar 

  20. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016)

    Google Scholar 

  21. An, J., Liu, F., Zhao, J., Shen, F.: IC networks: remodeling the basic unit for convolutional neural networks. arXiv:2102.03495 (2021)

  22. Vanhoucke, V.: Learning visual representations at scale. In: ICLR (Invited Talk) (2014)

    Google Scholar 

  23. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-ResNet and the impact of residual connections on learning. In: AAAI (2017)

    Google Scholar 

  24. Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C.: Ghostnet: more features from cheap operations. In: CVPR (2020)

    Google Scholar 

  25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  26. Luo, J.-H., Wu, J., Lin, W.: ThiNet: a filter level pruning method for deep neural network compression. In: ICCV (2017)

    Google Scholar 

  27. Zhang, Q., et al.: Split to be slim: an overlooked redundancy in vanilla convolution. In: IJCAI (2020)

    Google Scholar 

  28. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report, Citeseer (2009)

    Google Scholar 

  29. Yu, R., et al.: NISP: pruning networks using neuron importance score propagation. In: CVPR (2018)

    Google Scholar 

  30. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  31. Huang, Z., Wang, N.: Data-driven sparse structure selection for deep neural networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 317–334. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_19

    Chapter  Google Scholar 

  32. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: ICCV (2017)

    Google Scholar 

  33. Wang, Y., Xu, C., Xu, C., Xu, C., Tao, D.: Learning versatile filters for efficient convolutional neural networks. In: NeurIPS (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiwei Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Âİ 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, D., Yu, X., Sun, Y., Zhuang, F., He, Q., Ye, S. (2021). BFConv: Improving Convolutional Neural Networks with Butterfly Convolution. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13111. Springer, Cham. https://doi.org/10.1007/978-3-030-92273-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92273-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92272-6

  • Online ISBN: 978-3-030-92273-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics