Skip to main content

Vehicle Image Generation Going Well with the Surroundings

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13111))

Included in the following conference series:

  • 2095 Accesses

Abstract

In spite of the advancement of generative models, there have been few studies generating objects in uncontrolled real-world environments. In this paper, we propose an approach for vehicle image generation in real-world scenes. Using a subnetwork based on a precedent work of image completion, our model makes the shape of an object. Details of objects are trained by additional colorization and refinement subnetworks, resulting in a better quality of generated objects. Unlike many other works, our method does not require any segmentation layout but still makes a plausible vehicle in an image. We evaluate our method by using images from Berkeley Deep Drive (BDD) and Cityscape datasets, which are widely used for object detection and image segmentation problems. The adequacy of the generated images by the proposed method has also been evaluated using a widely utilized object detection algorithm and the FID score.

J. Kim and J. Kim—Equally contributed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berthelot, D., Schumm, T., Metz, L.: BEGAN: boundary equilibrium generative adversarial networks. arXiv preprint arXiv:1703.10717 (2017)

  2. Chen, Q., Koltun, V.: Photographic image synthesis with cascaded refinement networks. In: The IEEE International Conference on Computer Vision (ICCV), vol. 1 (2017)

    Google Scholar 

  3. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  4. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The PASCAL visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Google Scholar 

  5. Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style. arXiv preprint arXiv:1508.06576 (2015)

  6. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5767–5777 (2017)

    Google Scholar 

  7. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Advances in Neural Information Processing Systems, pp. 6626–6637 (2017)

    Google Scholar 

  8. Hong, S., Yan, X., Huang, T., Lee, H.: Learning hierarchical semantic image manipulation through structured representations. arXiv preprint arXiv:1808.07535(2018)

  9. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. (TOG) 36(4), 107 (2017)

    Google Scholar 

  10. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. arXiv preprint (2017)

    Google Scholar 

  11. Liu, G., Reda, F.A., Shih, K.J., Wang, T.-C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_6

    Chapter  Google Scholar 

  12. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

    Google Scholar 

  13. Wang, C., Zheng, H., Yu, Z., Zheng, Z., Gu, Z., Zheng, B.: Discriminative region proposal adversarial networks for high-quality image-to-image translation. arXiv preprint arXiv:1711.09554 (2017)

  14. Xu, H., Gao, Y., Yu, F., Darrell, T.: End-to-end learning of driving models from large-scale video datasets. arXiv preprint (2017)

    Google Scholar 

  15. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)

  16. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

    Chapter  Google Scholar 

  17. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

    Google Scholar 

  18. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (2021R1A2C3006659).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nojun Kwak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, J., Kim, J., Yoo, J., Kim, D., Kwak, N. (2021). Vehicle Image Generation Going Well with the Surroundings. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13111. Springer, Cham. https://doi.org/10.1007/978-3-030-92273-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92273-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92272-6

  • Online ISBN: 978-3-030-92273-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics