Skip to main content

Consistent Knowledge Distillation Based on Siamese Networks

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1516))

Included in the following conference series:

  • 2304 Accesses

Abstract

In model compression, knowledge distillation is most used technique that uses a large teacher network to transfer knowledge to a small student network to improve student network performance. However, most knowledge distillation algorithms only focus on exploring informative knowledge for transferring but ignore the consistency between the teacher network and the student network. In this paper, we propose a new knowledge distillation framework (SNKD) to calculate the consistency of the teacher network and the student network based on the siamese networks. The teacher network and student network features are input into the siamese networks to calculate the discrepancies between them based on the contrastive learning loss. Through minimizing the contrastive learning loss, the student network is promoted to consistent with the teacher network and obtain a ability close to the teacher. We have verify the efficiency of the SNKD by experiment on popular datasets. All SNKD trained student network models have reached ability similar or even better than teacher networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56

    Chapter  Google Scholar 

  2. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a siamese time delay neural network. Adv. Neural Inf. Process. Syst. 6, 737–744 (1993)

    Google Scholar 

  3. Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 215–223. JMLR Workshop and Conference Proceedings (2011)

    Google Scholar 

  4. He, K., Zhang, X., Ren, S., Jian, S.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  5. Heo, B., Lee, M., Yun, S., Choi, J.Y.: Knowledge transfer via distillation of activation boundaries formed by hidden neurons. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3779–3787 (2019)

    Google Scholar 

  6. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. Comput. Sci. 14(7), 38–39 (2015)

    Google Scholar 

  7. Hoffer, E., Ailon, N.: Deep metric learning using triplet network. In: Feragen, A., Pelillo, M., Loog, M. (eds.) SIMBAD 2015. LNCS, vol. 9370, pp. 84–92. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24261-3_7

    Chapter  Google Scholar 

  8. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  9. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: ICML (2010)

    Google Scholar 

  10. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning (2011)

    Google Scholar 

  11. Park, W., Kim, D., Lu, Y., Cho, M.: Relational knowledge distillation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3967–3976 (2019)

    Google Scholar 

  12. Peng, B., et al.: Correlation congruence for knowledge distillation (2019)

    Google Scholar 

  13. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets: hints for thin deep nets. Comput. Sci. (2014)

    Google Scholar 

  14. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  15. Tung, F., Mori, G.: Similarity-preserving knowledge distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1365–1374 (2019)

    Google Scholar 

  16. Wang, K., Gao, X., Zhao, Y., Li, X., Dou, D., Xu, C.Z.: Pay attention to features, transfer learn faster CNNs. In: International Conference on Learning Representations (2019)

    Google Scholar 

  17. Xu, Z., Hsu, Y.C., Huang, J.: Training shallow and thin networks for acceleration via knowledge distillation with conditional adversarial networks (2017)

    Google Scholar 

  18. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928 (2016)

  19. Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint arXiv:1605.07146 (2016)

Download references

Acknowledgement

This work was supported by the Mianyang Science and Technology Program 2020YFZJ016, SWUST Doctoral Foundation under Grant 19zx7102, 21zx7114, Sichuan Science and Technology Program under Grant 2020YFS0307.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, J., Yang, X., Cheng, X., Jiang, N., Yu, W., Zhang, P. (2021). Consistent Knowledge Distillation Based on Siamese Networks. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Communications in Computer and Information Science, vol 1516. Springer, Cham. https://doi.org/10.1007/978-3-030-92307-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92307-5_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92306-8

  • Online ISBN: 978-3-030-92307-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics