Skip to main content

Dynamic Convolution Pruning Using Pooling Characteristic in Convolution Neural Networks

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1516))

Included in the following conference series:

Abstract

Dynamic pruning is an effective technique that has been widely applied to deep neural network compression. However, many existing dynamic methods involve network modification and time-consuming retraining. In this paper, we propose a dynamic region pruning method to skip partial regions in CNNs by considering the characteristic of pooling (max- or min-pooling). Specifically, kernels in a filter are ordered according to their \(\ell _{1}\)-norm so that a smaller left partial sum could be obtained, leading to more opportunities for pruning. Without fine-tuning or network retraining, scale factors approximating the left partial sum are efficiently and thoroughly explored by model inferencing on the validation dataset. The experimental results on the testing dataset show that we could achieve up to 43.6% operation reduction while keeping a negligible accuracy loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ehteshami Bejnordi, A., Krestel, R.: Dynamic channel and layer gating in convolutional neural networks. In: Schmid, U., Klügl, F., Wolter, D. (eds.) KI 2020. LNCS (LNAI), vol. 12325, pp. 33–45. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58285-2_3

    Chapter  Google Scholar 

  2. Chen, A., Smith, G.: (2017). https://github.com/aaron-xichen/pytorch-playground

  3. Gao, X., Zhao, Y., Dudziak, Ł., Mullins, R., Zhong Xu, C.: Dynamic channel pruning: feature boosting and suppression. In: International Conference on Learning Representations (2019)

    Google Scholar 

  4. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  5. Hua, W., Zhou, Y., De Sa, C., Zhang, Z., Suh, G.E.: Channel gating neural networks. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, pp. 1886–1896 (2019)

    Google Scholar 

  6. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  7. Lin, J., Rao, Y., Lu, J., Zhou, J.: Runtime neural pruning. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 2178–2188 (2017)

    Google Scholar 

  8. Liu, C., Wang, Y., Han, K., Xu, C., Xu, C.: Learning instance-wise sparsity for accelerating deep models. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pp. 3001–3007. International Joint Conferences on Artificial Intelligence Organization (2019)

    Google Scholar 

  9. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: NIPS (2017)

    Google Scholar 

  10. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR (2015)

    Google Scholar 

  11. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)

    Google Scholar 

  12. Wang, Y., et al.: Dual dynamic inference: enabling more efficient, adaptive, and controllable deep inference. IEEE J. Sel. Top. Signal Process. 14(4), 623–633 (2020)

    Article  Google Scholar 

  13. Wu, Z., et al.: Blockdrop: dynamic inference paths in residual networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8817–8826 (2018)

    Google Scholar 

  14. Xia, W., Yin, H., Dai, X., Jha, N.K.: Fully dynamic inference with deep neural networks. IEEE Trans. Emerg. Top. Comput. 01, 1 (2021)

    Google Scholar 

  15. Yang, B., Bender, G., Le, Q.V., Ngiam, J.: CondConv: conditionally parameterized convolutions for efficient inference. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, pp. 1307–1318 (2019)

    Google Scholar 

  16. Yuan, Z., Wu, B., Sun, G., Liang, Z., Zhao, S., Bi, W.: S2DNAS: transforming static CNN model for dynamic inference via neural architecture search. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part II. LNCS, vol. 12347, pp. 175–192. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_11

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant 61804017 and in part by the National Key Research and Development Project of China (No. 2020AAA0104603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dajiang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Liu, D., Xing, Y. (2021). Dynamic Convolution Pruning Using Pooling Characteristic in Convolution Neural Networks. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Communications in Computer and Information Science, vol 1516. Springer, Cham. https://doi.org/10.1007/978-3-030-92307-5_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92307-5_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92306-8

  • Online ISBN: 978-3-030-92307-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics