Skip to main content

A Scan-to-Locality Map Strategy for 2D LiDAR and RGB-D Data Fusion

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1517))

Included in the following conference series:

Abstract

2D LiDAR and RGB-D camera are two widely used sensors in the task of simultaneous localization and mapping (SLAM). In spite of various map methods for SLAM, an effective strategy which is able to fuse 2D-LiDAR and RGB-D data in a uniform style is still expected. This work proposes a novel map strategy for 2D-LiDAR and RGB-D data. Different from traditional maps where the map information for different views is stored separately in their original two-dimensional (2D) grids or three-dimensional (3D) voxels, in the proposed map strategy, the data obtained by multiple sensors for current view are fused as feature vectors and stored in the current grids. We call this as Scan-to-Locality (STL) map strategy. In re-localization phase, the fusion vector obtained at the current view is used to find the similar ones from the STL map using distance based similarity evaluation and Siamese-network image matching technique. In this way, the re-localization strategy is optimized as a coarse-to-fine schema in the proposed STL map strategy. We validate the proposed method on the widely recognized in-door navigation database Robot@Home. The experiments indicate the proposed method own the abilities of accurate re-localization in nearly real time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zlot, R., Bosse, M.: Place recognition using keypoint similarities in 2D lidar maps. In: Springer Tracts in Advanced Robotics, vol. 54, pp. 363–372 (2009)

    Google Scholar 

  2. Olson, E.B.: Real-time correlative scan matching. In: IEEE International Conference on Robotics & Automation. IEEE (2009)

    Google Scholar 

  3. Manasi Muglikar, Z.Z., Scaramuzza, D.: Voxel map for visual SLAM. Presented at the IEEE Conference on Robotics and Automation (ICRA), Paris (2020)

    Google Scholar 

  4. Endres, F., Hess, J., Sturm, J., et al.: 3-D mapping with an RGB-D camera. IEEE Trans. Rob. 30(1), 177–187 (2014)

    Article  Google Scholar 

  5. Endres, F., Hess, J., Sturm, J.: 3-D mapping with an RGB-D camera. IEEE Trans. Rob. 30(1), 177–187 (2014)

    Article  Google Scholar 

  6. Bo, T., et al.: RGB-D based cognitive map building and navigation. In: 2013 IEEE/RSJ International Conference on IEEE Intelligent Robots and Systems (IROS) (2014)

    Google Scholar 

  7. Ylimaki, M., Heikkil, J., Kannala, J.: Accurate 3-D reconstruction with RGB-D cameras using depth map fusion and pose refinement. Presented at the 2018 24th International Conference on Pattern Recognition (ICPR) Beijing, China (2018)

    Google Scholar 

  8. Kuan, Y.W., Ee, N.O., Wei, L.S.: Comparative study of Intel R200, Kinect v2, and Primesense RGB-D sensors performance outdoors. IEEE Sens. J. 19(19), 8741–8750 (2019)

    Google Scholar 

  9. François Pomerleau, F.C., Siegwart, R., Magnenat, S.: Comparing ICP variants on real-world data sets. Auton. Rob. 34, 133–148 (2013)

    Google Scholar 

  10. Ji-Hua, Z., Nan-Ning, Z., Ze-Jian, Y., Qiang, Z.: A SLAM algorithm based on central difference particle filter. Acta Automatica Sinica 36(2), 249–57 (2010)

    Article  Google Scholar 

  11. Zhang, J., Singh, S.: LOAM: lidar odometry and mapping in real-time. In: Robotics: Science and Systems Conference (2014)

    Google Scholar 

  12. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  13. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  14. Edgar Simo-Serra, E.T., Ferraz, L., Kokkinos, I., Fua, P., Moreno-Noguer, F.: Discriminative learning of deep convolutional feature point descriptors. Presented at the 2015 IEEE International Conference on Computer Vision (CVPR) (2015)

    Google Scholar 

  15. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–606 (1992)

    Google Scholar 

  16. Himstedt, M., et al.: Large scale place recognition in 2D LIDAR scans using Geometrical landmark relations. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems IEEE (2014)

    Google Scholar 

  17. Debeunne, C., Vivet, D.: A review of visual-LiDAR fusion based simultaneous localization and mapping. Sensors 20(7) (2020)

    Google Scholar 

  18. Bo, D., Wei, X., Jia, W., et al.: Stacked convolutional denoising auto-encoders for feature representation. IEEE Trans. Cybern. 47(4), 1017–1027 (2017)

    Article  Google Scholar 

  19. Paul, N.D.M., Besl, J.: A method for registration of 3-D shapes. IEEE T. Pattern Anal. 14(2), 239–256 (1992)

    Google Scholar 

  20. Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces. Int. J. Comput. Vision 13(2), 119–152 (1994)

    Article  Google Scholar 

  21. Ruiz-Sarmiento, J.R, Galindo, C., et al.: Robot@Home, a robotic dataset for semantic mapping of home environments. Int. J. Rob. Res. 36, 131–141 (2017)

    Google Scholar 

  22. Mindspore: VGG16. Website (2020). https://gitee.com/mindspore/mindspore/blob/r1.1/model_zoo/official/cv/vgg16/src/vgg.py

Download references

Acknowledgments

This work is supported by the National Key Research & Development Program of China (No. 2018AAA0102902), the National Natural Science Foundation of China (NSFC) (No. 61873269), the Beijing Natural Science Foundation (No: L192005), the CAAI-Huawei MindSpore Open Fund (CAAIXSJLJJ-20202-027A), the Guangxi Key Research and Development Program (AB18221011, AB21075004, AD18281002, AD19110137), the Natural Science Foundation of Guangxi of China (No: 2020GXNSFAA297061, 2019GXNSFDA185006, 2019GXN SFDA185007), Guangxi Key Laboratory of Intelligent Processing of Computer Images and Graphics (No GIIP201702) and Guangxi Key Laboratory of Trusted Software (NO kx201621, kx201715).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghao Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Yang, M., Qu, Y., Chen, J., Qiang, B., Shi, H. (2021). A Scan-to-Locality Map Strategy for 2D LiDAR and RGB-D Data Fusion. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Communications in Computer and Information Science, vol 1517. Springer, Cham. https://doi.org/10.1007/978-3-030-92310-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92310-5_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92309-9

  • Online ISBN: 978-3-030-92310-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics