Skip to main content

EEG-Based Classification of Lower Limb Motor Imagery with STFT and CNN

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1517))

Included in the following conference series:

Abstract

In order to classify the brain signals of lower limb motor imagery, we used the method of short-time fourier transform (STFT) to transform the signals into time spectrum, and then processed the size and gray scale of the obtained time spectrum. Thus we constructed a neural network model called pragmatic convolutional neural network (pCNN), and the processed 128 * 128 pixel grayscale time spectrums were used as the input for classification. The classification effect was good on all 10 subjects, with the highest accuracy reaching 76\(\%\), while the comparison model was only 66.88\(\%\) (shallow CNN), 52\(\%\) (recurrent CNN) and 68.62 (common spatial pattern + support vector machines). The research results show that STFT is very effective in transforming the EEG input of CNN, and due to the difference of the activated regions between lower limbs and upper limbs, many models with good performance for upper limbs cannot be simply copied to lower limbs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rao, R.P.N.: Brain-Computer Interfacing: An Introduction, 1st edn., pp. 109–148. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  2. Pfurtscheller, G., Brunner, C., Schlogl, A., et al.: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 31(1), 153–159 (2006)

    Article  Google Scholar 

  3. Sun, H., Fu, Y., Xiong, X., et al.: Study on EEG pattern recognition based on HHT motor imagery. Acta Automatica Sinica 41(9), 1686–1692 (2015)

    Google Scholar 

  4. Heo, J., Yoon, G.: EEG studies on physical discomforts induced by virtual reality gaming. J. Electr. Eng. Technol. 15(3), 1323–1329 (2020)

    Article  Google Scholar 

  5. Czeszumski, A., Eustergerling, S., Lang, A., et al.: Hyperscanning: a valid method to study neural inter-brain underpinnings of social interaction. Front. Hum. Neurosci. 14, 39 (2020)

    Article  Google Scholar 

  6. Meng, J., Zhang, S., Bekyo, A., et al.: Noninvasive electroencephalogram based control of a robotic arm for reach and grasp tasks. Sci. Rep. 6(1), 38565 (2016)

    Article  Google Scholar 

  7. Stippich, C., Heiland, S., Tronnier, V., et al.: Functional magnetic resonance imaging: physiological background, technical aspects and prerequisites for clinical use. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 174(2), 242 (2002)

    Article  Google Scholar 

  8. Hsu, W., Fong, L., Wei, C., et al.: EEG classification of imaginary lower limb stepping movements based on fuzzy support vector machine with kernel-induced membership function. Int. J. Fuzzy Syst. 19(2), 1–14 (2017)

    MathSciNet  Google Scholar 

  9. Padfield, N., Zabalza, J., Zhao, H., et al.: EEG-based brain-computer interfaces using motor-imagery: techniques and challenges. Sensors (Switzerland) 19(6), 1–34 (2019)

    Article  Google Scholar 

  10. Arnaud, D., Scott, M.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)

    Article  Google Scholar 

  11. Tayeb, Z., Fedjaev, J., Ghaboosi, N., et al.: Validating deep neural networks for online decoding of motor imagery movements from EEG signals. Sensors 19(210), 1–17 (2019)

    Google Scholar 

  12. Schirrmeister, R.T., Springenberg, J.T., Fiederer, L.D.J., et al.: Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38(11), 5391–5420 (2017)

    Article  Google Scholar 

  13. Liang, M., Hu, X.: Recurrent convolutional neural network for object recognition. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3367–3375. IEEE Computer Society, Boston (2015)

    Google Scholar 

  14. Ramoser, H., Muller-Gerking, J., Pfurtscheller, G.: Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 8(4), 441–446 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grants 62176054 and 61773114, and the University Synergy Innovation Program of Anhui Province under Grant GXXT-2020-015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haixian Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, B., Ge, S., Wang, H. (2021). EEG-Based Classification of Lower Limb Motor Imagery with STFT and CNN. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Communications in Computer and Information Science, vol 1517. Springer, Cham. https://doi.org/10.1007/978-3-030-92310-5_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92310-5_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92309-9

  • Online ISBN: 978-3-030-92310-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics