Skip to main content

Aspect-Based Sentiment Analysis Using Graph Convolutional Networks and Co-attention Mechanism

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1517))

Included in the following conference series:

Abstract

Aspect-based sentiment analysis (ABSA) refers to classifying the sentiment polarity of a specific aspect in a sentence. Recently, attention-based deep learning approaches are proposed to capture the semantic information and achieve satisfying results. However, due to the significance of syntactic structure, syntactic information is also analyzed for ABSA. As such, this work proposes a model that integrates the graph convolution network (GCN) and the co-attention mechanism to deal with the aspect-based information and remove the noise from unrelated context words. Both the semantic information and the syntactic information are conveyed by the representation for sentiment analysis. Experimental results show our model achieves a better working performance, which establishes a strong evidence of the capability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol. 5(1), 1–167 (2012)

    Article  Google Scholar 

  2. Xianghua, F., Yang, J., Li, J., Fang, M., Wang, H.: Lexicon-enhanced LSTM with attention for general sentiment analysis. IEEE Access 6, 71884–71891 (2018)

    Article  Google Scholar 

  3. Li, H., Xue, Y., Zhao, H., Hu, X., Peng, S.: Co-attention networks for aspect-level sentiment analysis. In: Tang, J., Kan, M.-Y., Zhao, D., Li, S., Zan, H. (eds.) NLPCC 2019. LNCS (LNAI), vol. 11839, pp. 200–209. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32236-6_17

    Chapter  Google Scholar 

  4. Zeng, J., Ma, X., Zhou, K.: Enhancing attention-based LSTM with position context for aspect-level sentiment classification. IEEE Access 7, 20462–20471 (2019)

    Article  Google Scholar 

  5. Minh, D.L., Sadeghi-Niaraki, A., Huy, H.D., Min, K., Moon, H.: Deep learning approach for short-term stock trends prediction based on two-stream gated recurrent unit network. IEEE Access 6, 55392–55404 (2018)

    Article  Google Scholar 

  6. Wang, Y., Huang, M., Zhu, X., Zhao, L.: Attention-based LSTM for aspect-level sentiment classification. In: EMNLP, pp. 606–615 (2016)

    Google Scholar 

  7. Zhang, C., Li, Q., Song, D.: Aspect-based sentiment classification with aspect-specific graph convolutional networks. arXiv preprint arXiv:1909.03477 (2019)

  8. Ma, X., Zeng, J., Peng, L., Fortino, G., Zhang, Y.: Modeling multi-aspects within one opinionated sentence simultaneously for aspect-level sentiment analysis. Futur. Gener. Comput. Syst. 93, 304–311 (2019)

    Article  Google Scholar 

  9. Ma, D., Li, S., Zhang, X., Wang, H.: Interactive attention networks for aspect-level sentiment classification. arXiv preprint arXiv:1709.00893 (2017)

  10. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)

  11. Bastings, J., Titov, I., Aziz, W., Marcheggiani, D., Sima’an, K.: Graph convolutional encoders for syntax-aware neural machine translation. arXiv preprint arXiv:1704.04675 (2017)

  12. Dong, L., Wei, F., Tan, C., Tang, D., Zhou, M., Xu, K.: Adaptive recursive neural network for target-dependent twitter sentiment classification. In: ACL (vol. 2: Short papers), pp. 49–54 (2014)

    Google Scholar 

  13. Maria Pontiki, D.G., John Pavlopoulos, H.P., Ion Androutsopoulos, S.M.: Semeval-2014 task 4: Semeval-2014 task 4: aspect based sentiment analysis. In: SemEval 2014, Dublin, Ireland, pp. 23–24 (2014)

    Google Scholar 

  14. Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S., Androutsopoulos, I.: Semeval-2015 task 12: aspect based sentiment analysis. In: SemEval 2015, pp. 486–495 (2015)

    Google Scholar 

  15. Pontiki, M., et al.: Semeval- 2016 task 5: aspect based sentiment analysis. In: International Workshop on Semantic Evaluation, pp. 19–30 (2016)

    Google Scholar 

  16. Huang, B., Ou, Y., Carley, K.M.: Aspect level sentiment classification with attention-over-attention neural networks. In: Thomson, R., Dancy, C., Hyder, A., Bisgin, H. (eds.) SBP-BRiMS 2018. LNCS, vol. 10899, pp. 197–206. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93372-6_22

    Chapter  Google Scholar 

  17. Li, X., Bing, L., Lam, W., Shi, B.: Transformation networks for target-oriented sentiment classification. arXiv preprint arXiv:1805.01086 (2018)

  18. Yuan, L., Wang, J., Yu, L.C., Zhang, X.: Graph attention network with memory fusion for aspect-level sentiment analysis. In: AACL and the IJCNLP, pp. 27–36 (2020)

    Google Scholar 

  19. Zhang, M., Qian, T.: Convolution over hierarchical syntactic and lexical graphs for aspect level sentiment analysis. In: EMNLP, pp. 3540–3549 (2020)

    Google Scholar 

Download references

Acknowledgments

This work was supported by Humanity and Social Science Foundation of the Ministry of Education of China (21A13022003), Zhejiang Provincial Natural Science Fund (LY19F030010), Zhejiang Provincial Social Science Fund (20NDJC216YB), Zhejiang Educational Science Fund (GH2021642), the Science and Technology Plan Project of Guangzhou under Grant Nos. 202102080258 and 201903010013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Xue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Z., Xue, Y., Xiao, L., Chen, J., Zhang, H. (2021). Aspect-Based Sentiment Analysis Using Graph Convolutional Networks and Co-attention Mechanism. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Communications in Computer and Information Science, vol 1517. Springer, Cham. https://doi.org/10.1007/978-3-030-92310-5_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92310-5_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92309-9

  • Online ISBN: 978-3-030-92310-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics