Skip to main content

MeTGAN: Memory Efficient Tabular GAN for High Cardinality Categorical Datasets

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1517))

Included in the following conference series:

Abstract

Generative Adversarial Networks (GANs) have seen their use for generating synthetic data expand, from unstructured data like images to structured tabular data. One of the recently proposed models in the field of tabular data generation, CTGAN, demonstrated state-of-the-art performance on this task even in the presence of a high class imbalance in categorical columns or multiple modes in continuous columns. Many of the recently proposed methods have also derived ideas from CTGAN. However, training CTGAN requires a high memory footprint while dealing with high cardinality categorical columns in the dataset. In this paper, we propose MeTGAN, a memory-efficient version of CTGAN, which reduces memory usage by roughly 80%, with a minimal effect on performance. MeTGAN uses sparse linear layers to overcome the memory bottlenecks of CTGAN. We compare the performance of MeTGAN with the other models on publicly available datasets. Quality of data generation, memory requirements, and the privacy guarantees of the models are the metrics considered in this study. The goal of this paper is also to draw the attention of the research community on the issue of the computational footprint of tabular data generation methods to enable them on larger datasets especially ones with high cardinality categorical variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Data to AI Lab, at MIT: Sdmetrics (2020). https://github.com/sdv-dev/SDMetrics

  2. Choi, E., Biswal, S., Malin, B., Duke, J., Stewart, W.F., Sun, J.: Generating multi-label discrete patient records using generative adversarial networks. In: Proceedings of the 2nd Machine Learning for Healthcare Conference, vol. 68. PMLR (2017)

    Google Scholar 

  3. Cormode, G., Procopiuc, C., Srivastava, D., Shen, E., Yu, T.: Differentially private spatial decompositions. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 20–31 (2012). https://doi.org/10.1109/ICDE.2012.16

  4. Engelmann, J., Lessmann, S.: Conditional wasserstein GAN-based oversampling of tabular data for imbalanced learning. Expert Syst. Appl. 174, 114582 (2021). https://doi.org/10.1016/j.eswa.2021.114582

    Article  Google Scholar 

  5. Goodfellow, I.J., et al.: Generative adversarial networks (2014)

    Google Scholar 

  6. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of wasserstein GANs. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS 2017, pp. 5769–5779. Curran Associates Inc., Red Hook (2017)

    Google Scholar 

  7. Kohavi, R., Becker, B.: Adult data set, May 1996. https://bit.ly/3v3VDIj

  8. Lin, Z., Khetan, A., Fanti, G., Oh, S.: PacGAN: the power of two samples in generative adversarial networks. IEEE J. Sel. Areas Inf. Theory 1, 324–335 (2020)

    Article  Google Scholar 

  9. Mottini, A., Lheritier, A., Acuna-Agost, R.: Airline passenger name record generation using generative adversarial networks. CoRR abs/1807.06657 (2018)

    Google Scholar 

  10. Park, N., Mohammadi, M., Gorde, K., Jajodia, S., Park, H., Kim, Y.: Data synthesis based on generative adversarial networks. Proc. VLDB Endow. 11(10), 1071–1083 (2018). https://doi.org/10.14778/3231751.3231757

    Article  Google Scholar 

  11. Patki, N., Wedge, R., Veeramachaneni, K.: The synthetic data vault, pp. 399–410, October 2016. https://doi.org/10.1109/DSAA.2016.49

  12. Peng, Z., et al.: Shrinking bigfoot: reducing wav2vec 2.0 footprint (2021)

    Google Scholar 

  13. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks (2016)

    Google Scholar 

  14. Reiter, J.: Using cart to generate partially synthetic, public use microdata. J. Off. Stat. 21, 441–462 (2005)

    Google Scholar 

  15. Fernandes, K., Vinagre, P., Cortez, P.: A proactive intelligent decision support system for predicting the popularity of online news. In: Pereira, F., Machado, P., Costa, E., Cardoso, A. (eds.) EPIA 2015. LNCS (LNAI), vol. 9273, pp. 535–546. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23485-4_53

    Chapter  Google Scholar 

  16. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 (2019)

    Google Scholar 

  17. Tan, M., Le, Q.V.: EfficientNetV2: smaller models and faster training (2021)

    Google Scholar 

  18. Toktogaraev, M.: Should this loan be approved or denied? https://bit.ly/3AptJaW

  19. Xu, L., Skoularidou, M., Cuesta-Infante, A., Veeramachaneni, K.: Modeling tabular data using conditional GAN. In: NIPS (2019)

    Google Scholar 

  20. Xu, L., Veeramachaneni, K.: Synthesizing tabular data using generative adversarial networks. arXiv preprint arXiv:1811.11264 (2018)

  21. Zhang, J., Cormode, G., Procopiuc, C.M., Srivastava, D., Xiao, X.: PrivBayes: private data release via Bayesian networks. ACM Trans. Database Syst. 42(4), 1–41 (2017)

    Article  MathSciNet  Google Scholar 

  22. Zhao, Z., Kunar, A., der Scheer, H.V., Birke, R., Chen, L.Y.: CTAB-GAN: effective table data synthesizing (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shreyansh Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, S., Kayathwal, K., Wadhwa, H., Dhama, G. (2021). MeTGAN: Memory Efficient Tabular GAN for High Cardinality Categorical Datasets. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Communications in Computer and Information Science, vol 1517. Springer, Cham. https://doi.org/10.1007/978-3-030-92310-5_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92310-5_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92309-9

  • Online ISBN: 978-3-030-92310-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics