Skip to main content

Designing Multiplier-Less JPEG Luminance Quantisation Matrix

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Abstract

A novel approach for generating a multiplier-less approximate JPEG quantisation matrix has been proposed in this paper. It is based on energy distribution of integer DCTs coefficients and rounding to integer power-of-two matrix. No multiplications required during the encode and decode stages using the combination between an integer DCT and the proposed rounded quantisation matrix. An arithmetic operation savings about 44.8% using the proposed quantisation matrix with integer DCT against the JPEG. The proposed quantisation matrix has been successfully evaluated against the conventional JPEG quantisation matrix for all different type test images. The experimental results reveal that JPEG compression scheme base on integer DCT combined with our proposed quantisation matrix can provide significant improvement in PSNR values compared with other quantisation matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wallace, G.K.: The JPEG still picture compression standard. IEEE Trans. Consum. Electr. 38(1), xviii–xxxiv (1992)

    Google Scholar 

  2. Richter, T., Clark, R.: Why JPEG is not JPEG -testing a 25 years old Standard. In: 2018 Picture Coding Symposium (PCS), pp. 1–5 (2018)

    Google Scholar 

  3. Fan, Z., de Queiroz, R.L.: Identification of bitmap compression history: JPEG detection and quantizer estimation. IEEE Trans. Image Process. 12(2), 230–235 (2003)

    Article  Google Scholar 

  4. Bianchi, T., Piva, A.: Image forgery localization via block-grained analysis of JPEG artifacts. IEEE Trans. Inf. Foren. Secur. 7(3), 1003–1017 (2012)

    Article  Google Scholar 

  5. Wang, Q., Zhang, R.: Double JPEG compression forensics based on a convolutional neural network. In: EURASIP J. Inf. Secur. 23 (2016)

    Google Scholar 

  6. Li, W., Zhou, W., Zhang, W., Qin, C., Hu, H., Yu, N.: Shortening the cover for fast JPEG steganography. IEEE Trans. Circuits Syst. Video Technol. 30(6), 1745–1757 (2019)

    Article  Google Scholar 

  7. Tao, J., Li, S., Zhang, X., Wang, Z.: Towards robust image steganography. IEEE Trans. Circuits Syst. Video Technol. 29(2), 594–600 (2019)

    Article  Google Scholar 

  8. Jiao, S., Jin, Z., Chang, C., Zhou, C., Zou, W., Li, X.: Compression of phase-only holograms with JPEG standard and deep learning. Appl. Sci. 8(8), 1258 (2018)

    Article  Google Scholar 

  9. Parker, M.: Digital Signal Processing 101: Everything You Need to Know to Get Started, 2nd edn, Elsevier, Pacific Grove (2017)

    Google Scholar 

  10. Wu, Y.-G.: GA-based DCT quantisation table design procedure for medical images. IEE-Vis. Image Sig. Process. 151(5), 353–359 (2004)

    Article  Google Scholar 

  11. Lazzerini, B., Marcelloni, F., Vecchio, M.: A multi-objective evolutionary approach to image quality/compression trade-off in JPEG baseline algorithm. Appl. Soft Comput. 10(2), 548–561 (2010)

    Article  Google Scholar 

  12. Tuba, M., Bacanin, N.: JPEG quantization tables selection by the firefly algorithm. In: International Conference on Multimedia Computing and Systems (ICMCS), pp. 153–158 (2014)

    Google Scholar 

  13. Ochoa-Domínguez, H., Rao, K.R.: Discrete Cosine Transform, 2nd edn, CRC Press, Boca Raton(2019)

    Google Scholar 

  14. Kouadria, N., Mechouek, K., Harize, S., Doghmane, N.: Region-of-interest based image compression using the discrete Tchebichef transform in wireless visual sensor networks. Comput. Electr. Eng. 73, 194–208 (2019)

    Article  Google Scholar 

  15. Jridi, M., Meher, P.K.: Scalable approximate DCT architectures for efficient HEVC-compliant video coding. IEEE Trans. Circuits Syst. Video Technol. 27(8), 1815–1825 (2017)

    Article  Google Scholar 

  16. de A. Coutinho, V., Cintra, R.J., Bayer, F.M.: Low-complexity multidimensional DCT approximations for high-order tensor data decorrelation. IEEE Trans. Image Process. 26(5), 2296–2310 (2017)

    Google Scholar 

  17. Zhang, J., Shi, W., Zhou, L., Gong, R., Wang, L., Zhou, H.: A low-power and high-PSNR unified DCT/IDCT architecture based on EARC and enhanced scale factor approximation. IEEE Access 7, 165684–165691 (2019)

    Article  Google Scholar 

  18. Gassoumi, I., Touil, L., Ouni, B., Mtibaa, A.: An efficient design of DCT approximation based on quantum dot cellular automata (QCA) technology. J. Electr. Comput. Eng. 2019 (2019)

    Google Scholar 

  19. Oliveira, P.A.M., Cintra, R.J., Bayer, F.M., Kulasekera, S., Madanayake, A.: Low-complexity image and video coding based on an approximate discrete Tchebichef transform. IEEE Trans. Circuits Syst. Video Technol. 27(5), 1066–1076 (2016)

    Article  Google Scholar 

  20. Ezhilarasi, R., Venkatalakshmi, K., Pradeep Khanth, B.: Enhanced approximate discrete cosine transforms for image compression and multimedia applications. Multimedia Tools Appl. 79, 8539–8552 (2020)

    Google Scholar 

  21. Taylor, C.N., Panigrahi, D., Dey, S.: Design of an adaptive architecture for energy efficient wireless image communication. In: International Workshop on Embedded Computer Systems (SAMOS), pp. 260–273 (2001)

    Google Scholar 

  22. Brahimi, M., Bouden, T., Brahimi, T., Boubchir, L.: A novel and efficient 8-point DCT approximation for image compression. Multimedia Tools Appl. 79, 7615–7631 (2020)

    Google Scholar 

  23. Oliveira, P.A.M., Oliveira, R.S., Cintra, R.J., Bayer, F.M., Madanayake, A.: JPEG quantisation requires bit-shifts only. Electr. Lett. 53(9), 588–590 (2017)

    Article  Google Scholar 

  24. Cintra, R.J., Bayer, F.M., Tablada, C.J.: Low-complexity 8-point DCT approximations based on integer functions. Sig. Process. 99, 201–214 (2014)

    Article  Google Scholar 

  25. Cintra, R.J., Bayer, F.M.: A DCT approximation for image compression. IEEE Sig. Process. Lett. 18(10), 579–582 (2011)

    Article  Google Scholar 

  26. Eskicioglu, A.M., Fisher, P.S.: Image quality measures and their performance. IEEE Trans. Commun. 43(12), 2959–2965 (1995)

    Article  Google Scholar 

  27. Grgic, S., Mrak, M., Grgic, M.: Comparison of JPEG image coders. In: Proceedings of the 3rd International Symposium on Video Processing and Multimedia Communications, pp. 79–85 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larbi Boubchir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brahimi, N., Bouden, T., Boubchir, L., Brahimi, T. (2021). Designing Multiplier-Less JPEG Luminance Quantisation Matrix. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Communications in Computer and Information Science, vol 1517. Springer, Cham. https://doi.org/10.1007/978-3-030-92310-5_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92310-5_79

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92309-9

  • Online ISBN: 978-3-030-92310-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics