Abstract
A novel approach for generating a multiplier-less approximate JPEG quantisation matrix has been proposed in this paper. It is based on energy distribution of integer DCTs coefficients and rounding to integer power-of-two matrix. No multiplications required during the encode and decode stages using the combination between an integer DCT and the proposed rounded quantisation matrix. An arithmetic operation savings about 44.8% using the proposed quantisation matrix with integer DCT against the JPEG. The proposed quantisation matrix has been successfully evaluated against the conventional JPEG quantisation matrix for all different type test images. The experimental results reveal that JPEG compression scheme base on integer DCT combined with our proposed quantisation matrix can provide significant improvement in PSNR values compared with other quantisation matrices.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wallace, G.K.: The JPEG still picture compression standard. IEEE Trans. Consum. Electr. 38(1), xviii–xxxiv (1992)
Richter, T., Clark, R.: Why JPEG is not JPEG -testing a 25 years old Standard. In: 2018 Picture Coding Symposium (PCS), pp. 1–5 (2018)
Fan, Z., de Queiroz, R.L.: Identification of bitmap compression history: JPEG detection and quantizer estimation. IEEE Trans. Image Process. 12(2), 230–235 (2003)
Bianchi, T., Piva, A.: Image forgery localization via block-grained analysis of JPEG artifacts. IEEE Trans. Inf. Foren. Secur. 7(3), 1003–1017 (2012)
Wang, Q., Zhang, R.: Double JPEG compression forensics based on a convolutional neural network. In: EURASIP J. Inf. Secur. 23 (2016)
Li, W., Zhou, W., Zhang, W., Qin, C., Hu, H., Yu, N.: Shortening the cover for fast JPEG steganography. IEEE Trans. Circuits Syst. Video Technol. 30(6), 1745–1757 (2019)
Tao, J., Li, S., Zhang, X., Wang, Z.: Towards robust image steganography. IEEE Trans. Circuits Syst. Video Technol. 29(2), 594–600 (2019)
Jiao, S., Jin, Z., Chang, C., Zhou, C., Zou, W., Li, X.: Compression of phase-only holograms with JPEG standard and deep learning. Appl. Sci. 8(8), 1258 (2018)
Parker, M.: Digital Signal Processing 101: Everything You Need to Know to Get Started, 2nd edn, Elsevier, Pacific Grove (2017)
Wu, Y.-G.: GA-based DCT quantisation table design procedure for medical images. IEE-Vis. Image Sig. Process. 151(5), 353–359 (2004)
Lazzerini, B., Marcelloni, F., Vecchio, M.: A multi-objective evolutionary approach to image quality/compression trade-off in JPEG baseline algorithm. Appl. Soft Comput. 10(2), 548–561 (2010)
Tuba, M., Bacanin, N.: JPEG quantization tables selection by the firefly algorithm. In: International Conference on Multimedia Computing and Systems (ICMCS), pp. 153–158 (2014)
Ochoa-DomÃnguez, H., Rao, K.R.: Discrete Cosine Transform, 2nd edn, CRC Press, Boca Raton(2019)
Kouadria, N., Mechouek, K., Harize, S., Doghmane, N.: Region-of-interest based image compression using the discrete Tchebichef transform in wireless visual sensor networks. Comput. Electr. Eng. 73, 194–208 (2019)
Jridi, M., Meher, P.K.: Scalable approximate DCT architectures for efficient HEVC-compliant video coding. IEEE Trans. Circuits Syst. Video Technol. 27(8), 1815–1825 (2017)
de A. Coutinho, V., Cintra, R.J., Bayer, F.M.: Low-complexity multidimensional DCT approximations for high-order tensor data decorrelation. IEEE Trans. Image Process. 26(5), 2296–2310 (2017)
Zhang, J., Shi, W., Zhou, L., Gong, R., Wang, L., Zhou, H.: A low-power and high-PSNR unified DCT/IDCT architecture based on EARC and enhanced scale factor approximation. IEEE Access 7, 165684–165691 (2019)
Gassoumi, I., Touil, L., Ouni, B., Mtibaa, A.: An efficient design of DCT approximation based on quantum dot cellular automata (QCA) technology. J. Electr. Comput. Eng. 2019 (2019)
Oliveira, P.A.M., Cintra, R.J., Bayer, F.M., Kulasekera, S., Madanayake, A.: Low-complexity image and video coding based on an approximate discrete Tchebichef transform. IEEE Trans. Circuits Syst. Video Technol. 27(5), 1066–1076 (2016)
Ezhilarasi, R., Venkatalakshmi, K., Pradeep Khanth, B.: Enhanced approximate discrete cosine transforms for image compression and multimedia applications. Multimedia Tools Appl. 79, 8539–8552 (2020)
Taylor, C.N., Panigrahi, D., Dey, S.: Design of an adaptive architecture for energy efficient wireless image communication. In: International Workshop on Embedded Computer Systems (SAMOS), pp. 260–273 (2001)
Brahimi, M., Bouden, T., Brahimi, T., Boubchir, L.: A novel and efficient 8-point DCT approximation for image compression. Multimedia Tools Appl. 79, 7615–7631 (2020)
Oliveira, P.A.M., Oliveira, R.S., Cintra, R.J., Bayer, F.M., Madanayake, A.: JPEG quantisation requires bit-shifts only. Electr. Lett. 53(9), 588–590 (2017)
Cintra, R.J., Bayer, F.M., Tablada, C.J.: Low-complexity 8-point DCT approximations based on integer functions. Sig. Process. 99, 201–214 (2014)
Cintra, R.J., Bayer, F.M.: A DCT approximation for image compression. IEEE Sig. Process. Lett. 18(10), 579–582 (2011)
Eskicioglu, A.M., Fisher, P.S.: Image quality measures and their performance. IEEE Trans. Commun. 43(12), 2959–2965 (1995)
Grgic, S., Mrak, M., Grgic, M.: Comparison of JPEG image coders. In: Proceedings of the 3rd International Symposium on Video Processing and Multimedia Communications, pp. 79–85 (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Brahimi, N., Bouden, T., Boubchir, L., Brahimi, T. (2021). Designing Multiplier-Less JPEG Luminance Quantisation Matrix. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Communications in Computer and Information Science, vol 1517. Springer, Cham. https://doi.org/10.1007/978-3-030-92310-5_79
Download citation
DOI: https://doi.org/10.1007/978-3-030-92310-5_79
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92309-9
Online ISBN: 978-3-030-92310-5
eBook Packages: Computer ScienceComputer Science (R0)