Skip to main content

Task-Specific Loss: A Teacher-Centered Approach to Transfer Learning Between Distinctly Structured Robotic Agents

  • Conference paper
  • First Online:
Informatics in Control, Automation and Robotics (ICINCO 2020)

Abstract

Recent progress in robotics and artificial intelligence let us envision a future where robot presence and activity will be ubiquitous. Fueled by economics, cultural background, and design choices, human creativity will most likely design robots of various forms and shapes, using a wide range of sensors and actuators to accomplish their tasks. Consequently, it is highly probable that differently structured robots will be required to perform the same task. As many of these tasks may require learning-based control, which still relies on millions of examples to perform correctly, it would be eminently useful to be able to transfer skills from one agent to another, notwithstanding their distinct physical structure. As such, we propose a new method for the fast transfer of skills using a family of differentiable task-specific distance metrics called Task-Specific Losses (TSL). After highlighting the main shared concepts and differences with the closest existing state-of-the-art method, we demonstrate this technique on two different assistive control tasks, showing that we can indeed transfer the realization of a task learned from an expert/teacher to an agent with no previous interaction with the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker, B., Kanitscheider, I., Markov, T., Wu, Y., Powell, G., McGrew, B., Mordatch, I.: Emergent tool use from multi-agent autocurricula. In: International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  2. Bansal, T., Pachocki, J., Sidor, S., Sutskever, I., Mordatch, I.: Emergent complexity via multi-agent competition. International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  3. Bellemare, M.G., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., Munos, R.: Unifying count-based exploration and intrinsic motivation. In: Advances in Neural Information Processing Systems (2016)

    Google Scholar 

  4. Burgess, C.P., et al.: Understanding disentangling in \(\beta \)-VAE. In: International Conference on Representation Learning (ICLR) (2018)

    Google Scholar 

  5. Cobbe, K., Klimov, O., Hesse, C., Kim, T., Schulman, J.: Quantifying generalization in reinforcement learning. In: Proceedings of Machine Learning Research (MLR) (2018)

    Google Scholar 

  6. Dai, Z., Yang, Z., Yang, Y., Carbonell, J.G., Le, Q.V., Salakhutdinov, R.: Transformer-XL: attentive language models beyond a fixed-length context. CoRR abs/1901.02860 (2019). http://arxiv.org/abs/1901.02860

  7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis (2019). https://doi.org/10.18653/v1/N19-1423. https://www.aclweb.org/anthology/N19-1423

  8. Duan, Y., Schulman, J., Chen, X., Bartlett, P.L., Sutskever, I., Abbeel, P.: RL2: fast reinforcement learning via slow reinforcement learning. In: International Conference on Representation Learning (ICRL) (2017)

    Google Scholar 

  9. Eysenbach, B., Gupta, A., Ibarz, J., Levine, S.: Diversity is all you need: learning skills without a reward function. In: International Conference on Representation Learning (ICRL) (2019)

    Google Scholar 

  10. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning (ICML) (2017)

    Google Scholar 

  11. Girshick, R.: Fast R-CNN. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448. IEEE Computer Society, USA (2015). https://doi.org/10.1109/ICCV.2015.169

  12. Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  13. Goodfellow, I.J., et al.: Generative adversarial nets. In: International Conference on Neural Information Processing Systems (NeurIPS) (2014)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  15. Howard, J., Ruder, S.: Universal language model fine-tuning for text classification. In: Association for Computational Linguistics (ACL) (2018)

    Google Scholar 

  16. James, S., Johns, E.: 3D simulation for robot arm control with deep Q-learning. arXiv (2016)

    Google Scholar 

  17. Kaiser, L., et al.: One model to learn them all. arXiv:170605137v1 (2017)

  18. Kingma, D.P., Lei Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980v9 (2017)

  19. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: 2nd International Conference on Learning Representations, ICLR Banff, AB, Canada, 14–16 April, Conference Track Proceedings (2014). http://arxiv.org/abs/1312.6114

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, NIPS’12, vol. 1, pp. 1097–1105. Curran Associates Inc., Red Hook (2012)

    Google Scholar 

  21. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: Albert: a lite BERT for self-supervised learning of language representations. In: International Conference on Learning Representations (2020)

    Google Scholar 

  22. Lopes, M., Lang, T., Toussaint, M., Yves Oudeyer, P.: Exploration in model-based reinforcement learning by empirically estimating learning progress. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 206–214. Curran Associates, Inc. (2012)

    Google Scholar 

  23. Losey, D.P., Srinivasan, K., Mandlekar, A., Garg, A., Sadigh, D.: Controlling assistive robots with learned latent actions. arXiv e-prints arXiv:1909.09674 (2019)

  24. Martin, L., et al.: CamemBERT: a tasty French language model (2019)

    Google Scholar 

  25. Mnih, V., et al.: Playing atari with deep reinforcement learning. CoRR abs/1312.5602 (2013). http://arxiv.org/abs/1312.5602

  26. Mounsif, M., Lengagne, S., Thuilot, B., Adouane, L.: Universal notice network: transferable knowledge among agents. In: 6th 2019 International Conference on Control, Decision and Information Technologies (IEEE-CoDIT) (2019)

    Google Scholar 

  27. Mounsif, M., Lengagne, S., Thuilot, B., Adouane, L.: BAM! base abstracted modeling with universal notice network: fast skill transfer between mobile manipulators. In: 7th 2020 International Conference on Control, Decision and Information Technologies (IEEE-CoDIT) (2020)

    Google Scholar 

  28. Mounsif, M., Lengagne, S., Thuilot, B., Adouane, L.: CoachGAN: fast adversarial transfer learning between differently shaped entities. In: 17th International Conference on Informatics in Control, Automation and Robotics (ICINCO) (2020)

    Google Scholar 

  29. Nachum, O., Norouzi, M., Xu, K., Schuurmans, D.: Bridging the gap between value and policy based reinforcement learning. In: International Conference on Neural Information Processing Systems (NeurIPS) (2017)

    Google Scholar 

  30. Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms. In: International Conference on Representation Learning (ICRL) (2019)

    Google Scholar 

  31. OpenAI, Akkaya, I., et al.: Solving Rubik’s cube with a robot hand. arXiv e-prints arXiv:1910.07113 (2019)

  32. OpenAI, Andrychowicz, M., et al.: Learning dexterous in-hand manipulation. CoRR abs/1808.00177 (2018). http://arxiv.org/abs/1808.00177

  33. Peng, X.B., Abbeel, P., Levine, S., van de Panne, M.: DeepMimic: example-guided deep reinforcement learning of physics-based character skills. ArXiv e-prints (2018)

    Google Scholar 

  34. Peng, X.B., Andrychowicz, M., Zaremba, W., Abbeel, P.: Sim-to-real transfer of robotic control with dynamics randomization. In: International Conference on Robotic and Automation (ICRA) (2018)

    Google Scholar 

  35. Peng, X.B., Berseth, G., Yin, K., van de Panne, M.: DeepLoco: dynamic locomotion skills using hierarchical deep reinforcement learning. ACM Trans. Graph. (Proc. SIGGRAPH 2017) 36(4), 1–13 (2017)

    Google Scholar 

  36. Peng, X.B., Chang, M., Zhang, G., Abbeel, P., Levine, S.: MCP: learning composable hierarchical control with multiplicative compositional policies. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 3681–3692. Curran Associates, Inc. (2019)

    Google Scholar 

  37. Peng, X.B., Kanazawa, A., Malik, J., Abbeel, P., Levine, S.: SFV: reinforcement learning of physical skills from videos. ACM Trans. Graph. 37(6), 1–14 (2018). https://doi.org/10.1145/3272127.3275014

    Article  Google Scholar 

  38. Peng, X.B., Kumar, A., Zhang, G., Levine, S.: Advantage-weighted regression: simple and scalable off-policy reinforcement learning. CoRR abs/1910.00177 (2019). https://arxiv.org/abs/1910.00177

  39. Pinto, L., Andrychowicz, M., Welinder, P., Zaremba, W., Abbeel, P.: Asymmetric actor critic for image-based robot learning. In: Kress-Gazit, H., Srinivasa, S.S., Howard, T., Atanasov, N. (eds.) Robotics: Science and Systems XIV, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, 26–30 June 2018 (2018)

    Google Scholar 

  40. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners. OpenAI Report (2019)

    Google Scholar 

  41. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection (2016)

    Google Scholar 

  42. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  43. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. CoRR abs/1804.02767 (2018), http://arxiv.org/abs/1804.02767

  44. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28, pp. 91–99. Curran Associates, Inc. (2015)

    Google Scholar 

  45. Riedmiller, M.A., et al.: Learning by playing - solving sparse reward tasks from scratch. In: International Conference on Learning Representation (ICLR) (2018)

    Google Scholar 

  46. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28. http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a. arXiv:1505.04597 [cs.CV]

  47. Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution strategies as a scalable alternative to reinforcement learning. ArXiv e-prints (2017)

    Google Scholar 

  48. Schmidhuber, J.: Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE Trans. Auton. Ment. Dev. 2(3), 230–247 (2010)

    Article  Google Scholar 

  49. Schmidhuber, J.: A possibility for implementing curiosity and boredom in model-building neural controllers. In: Proceedings of the First International Conference on Simulation of Adaptive Behavior on From Animals to Animats (1991)

    Google Scholar 

  50. Schmidhuber, J.: Evolutionary principles in self-referential learning. Ph.D. thesis, Technische Universitat München (1987)

    Google Scholar 

  51. Schulman, J., Abbeel, P., Chen, X.: Equivalence between policy gradients and soft Q-learning. CoRR abs/1704.06440 (2017). http://arxiv.org/abs/1704.06440

  52. Schulman, J., Moritz, P., Levine, S., Jordan, M., Abbeel, P.: Trust region policy optimization. In: International Conference on Machine Learning (ICML) (2015)

    Google Scholar 

  53. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. CoRR abs/1707.06347 (2017). http://arxiv.org/abs/1707.06347

  54. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)

    Article  Google Scholar 

  55. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. J. Nat. (2015)

    Google Scholar 

  56. Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)

    Google Scholar 

  57. Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domain randomization for transferring deep neural networks from simulation to the real world. ArXiv e-prints (2017)

    Google Scholar 

  58. Wang, J.X., et al.: Learning to reinforcement learn. CoRR abs/1611.05763 (2016). http://arxiv.org/abs/1611.05763

  59. Wang, R., Lehman, J., Clune, J., Stanley, K.O.: Paired open-ended trailblazer (POET): endlessly generating increasingly complex and diverse learning environments and their solutions. CoRR abs/1901.01753 (2019). http://arxiv.org/abs/1901.01753

  60. Xavier, G., Bengio, Y.: Understanding the difficulty of training deep feedforward neural network. In: International Conference on Artificial Intelligence and Statistics (AISTATS) (2010)

    Google Scholar 

  61. Xie, S., Girshick, R.B., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  62. Yu, T., et al.: Meta-world: a benchmark and evaluation for multi-task and meta-reinforcement learning (2019). https://github.com/rlworkgroup/metaworld

  63. Ziebart, B.D., Maas, A., Bagnell, J.A., Dey, A.K.: Maximum entropy inverse reinforcement learning. In: Association for Advancement of Artificial Intelligence (AAAI) (2008)

    Google Scholar 

  64. Zintgraf, L.M., Shiarlis, K., Kurin, V., Hofmann, K., Whiteson, S.: CAML: fast context adaptation via meta-learning. ArXiv e-prints (2018)

    Google Scholar 

Download references

Acknowledgment

This work has been sponsored by the French government research program Investissements d’Avenir through the RobotEx Equipment of Excellence (ANR-10-EQPX-44) and the IMobS3 Laboratory of Excellence (ANR-10-LABX-16-01), by the European Union through the program of Regional competitiveness and employment 2007–2013 (ERDF - Auvergne Region), by the Auvergne region and the French Institute for Advanced Mechanics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Mounsif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mounsif, M., Lengagne, S., Thuilot, B., Adouane, L. (2022). Task-Specific Loss: A Teacher-Centered Approach to Transfer Learning Between Distinctly Structured Robotic Agents. In: Gusikhin, O., Madani, K., Zaytoon, J. (eds) Informatics in Control, Automation and Robotics. ICINCO 2020. Lecture Notes in Electrical Engineering, vol 793. Springer, Cham. https://doi.org/10.1007/978-3-030-92442-3_10

Download citation

Publish with us

Policies and ethics