Skip to main content

Satisfaction of Modeling Requirements for Intelligent Navigation Systems: Risk Management Context

  • Conference paper
  • First Online:
Informatics in Control, Automation and Robotics (ICINCO 2020)

Abstract

This work aims to boost the reliability and safety of Intelligent Transportation Systems (ITSs). To meet this goal, a particular risk assessment and management scheme is introduced to provide navigation approaches with strong safety guarantees. On the one hand, the interval analysis is adopted to develop a high fidelity model used for risk assessment purposes. This model is based on a set-membership computation of the Time-To-Collision (TTC) indicator. The TTC approximation methodology, which fits well the car-following scenario, takes into account several uncertainties of distinct sources. Even more, a novel second-order set-membership TTC formalization is introduced by solving a polynomial equation with interval coefficients. This formalization is suggested in an effort to diminish modeling errors. Both the first and second order interval-based TTC are improved via a correlation analysis-based statistical process. On the other hand, the complexity aspects of modern architectures are analyzed in this work. The tackled analysis emphasizes the destructive impacts of the inter/intra-vehicular communication on ITSs reliability. Thus, a Response Time Analysis (RTA) scheme is integrated into the proposed risk management to consider explicitly the communication latency-related material constraints. Then, the RTA results are involved into the simulation work. Finally, the simulation results applied on an adaptive cruise control system of both high/low-order TTC formalizations demonstrate that the low-order model inaccuracy is compensated. Through the interval/correlation analysis and the consideration of the material constraints, a great balance between modeling accuracy and simplicity is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdi, L., Meddeb, A.: Driver information system: a combination of augmented reality, deep learning and vehicular ad-hoc networks. Multimedia Tools Appl. 77(12), 14673–14703 (2018). https://doi.org/10.1007/s11042-017-5054-6

    Article  Google Scholar 

  2. Ahiska, K., Ozgoren, M.K., Leblebicioglu, M.K.: Autopilot design for vehicle cornering through icy roads. IEEE Trans. Veh. Technol. 67(3), 1867–1880 (2018)

    Article  Google Scholar 

  3. Aksjonov, A., Nedoma, P., Vodovozov, V., Petlenkov, E., Herrmann, M.: Detection and evaluation of driver distraction using machine learning and fuzzy logic. IEEE Trans. Intell. Transp. Syst. 20(6), 2048–2059 (2019)

    Article  Google Scholar 

  4. Ben Lakhel, N.M., Nasri, O., Gueddi, I., Ben Hadj Slama, J.: SDK decentralized diagnosis with vertices principle component analysis. In: 2016 International Conference on Control, Decision and Information Technologies (CoDIT), pp. 517–522 (2016)

    Google Scholar 

  5. Bock, F., Siegl, S., Bazan, P., Buchholz, P., German, R.: Reliability and test effort analysis of multi-sensor driver assistance systems. J. Syst. Architect. 85–86, 1–13 (2018)

    Article  Google Scholar 

  6. Chen, L., et al.: Survey of pedestrian action recognition techniques for autonomous driving. Tsinghua Sci. Technol. 25(4), 458–470 (2020)

    Article  Google Scholar 

  7. Chen, L., Yang, X., Liu, P.X., Li, C.: A novel outlier immune multipath fingerprinting model for indoor single-site localization. IEEE Access 7, 21971–21980 (2019)

    Article  Google Scholar 

  8. Cvjetkovic, M., Rakocevic, V.: Relative localisation algorithm for neighbour classification in ad hoc networks of moving robots. In: Proceedings of the First ACM International Workshop on the Engineering of Reliable, Robust, and Secure Embedded Wireless Sensing Systems, New York, NY, USA, pp. 46–53 (2017)

    Google Scholar 

  9. Dey, K.C., Rayamajhi, A., Chowdhury, M., Bhavsar, P., Martin, J.: Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication in a heterogeneous wireless network - performance evaluation. Transp. Res. Part C: Emerg. Technol. 68, 168–184 (2016)

    Article  Google Scholar 

  10. Durisic, D., Nilsson, M., Staron, M., Hansson, J.: Measuring the impact of changes to the complexity and coupling properties of automotive software systems. J. Syst. Softw. 86(5), 1275–1293 (2013)

    Article  Google Scholar 

  11. Fan, X., Deng, J., Chen, F.: Zeros of univariate interval polynomials. J. Comput. Appl. Math. 216(2), 563–573 (2008)

    Article  MathSciNet  Google Scholar 

  12. Ferreira, J., Patrıcio, F., Oliveira, F.: A priori estimates for the zeros of interval polynomials. J. Comput. Appl. Math. 136(1), 271–281 (2001)

    Article  MathSciNet  Google Scholar 

  13. Gamal, I., et al.: A robust, real-time and calibration-free lane departure warning system. Microprocess. Microsyst. 71, 102874 (2019)

    Article  Google Scholar 

  14. Gao, X., Su, D.: Suppression of a certain vehicle electrical field and magnetic field radiation resonance point. In: 2016 IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1–6 (2016)

    Google Scholar 

  15. Hansen, E., Walster, G.W.: Global Optimization Using Interval Analysis: Revised and Expanded, vol. 264. CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  16. Hansen, E.R., Walster, G.W.: Sharp bounds on interval polynomial roots. Reliable Comput. 8(2), 115–122 (2002)

    Article  MathSciNet  Google Scholar 

  17. Hou, J., List, G.F., Guo, X.: New algorithms for computing the time-to-collision in freeway traffic simulation models. Comput. Intell. Neurosci. 2014, 1–8 (2014)

    Article  Google Scholar 

  18. Iberraken, D., Adouane, L., Denis, D.: Multi-level Bayesian decision-making for safe and flexible autonomous navigation in highway environment. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3984–3990 (2018)

    Google Scholar 

  19. Iberraken, D., Adouane, L., Denis, D.: Reliable risk management for autonomous vehicles based on sequential Bayesian decision networks and dynamic inter-vehicular assessment. In: IEEE 2019 IEEE Intelligent Vehicles Symposium (IV 2019), Paris-France, 9–12 June 2019

    Google Scholar 

  20. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis with Examples in Parameter and State Estimation, Robust Control and Robotics. Springer, London (2001). https://doi.org/10.1007/978-1-4471-0249-6

    Book  MATH  Google Scholar 

  21. Khelifi, A., Ben Lakhal, N.M., Gharsallaoui, H., Nasri, O.: Artificial neural network-based fault detection. In: 2018 5th International Conference on Control, Decision and Information Technologies (CoDIT), pp. 1017–1022 (2018)

    Google Scholar 

  22. Lakhal, N.M.B., Adouane, L., Nasri, O., Slama, J.B.H.: Interval-based solutions for reliable and safe navigation of intelligent autonomous vehicles. In: 2019 12th International Workshop on Robot Motion and Control (RoMoCo), Poznań, Poland, pp. 124–130, July 2019. https://doi.org/10.1109/RoMoCo.2019.8787343

  23. Lakhal, N.M.B., Adouane, L., Nasri, O., Slama, J.B.H.: Interval-based/data-driven risk management for intelligent vehicles: application to an adaptive cruise control system. In: 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, pp. 239–244, June 2019. https://doi.org/10.1109/IVS.2019.8814216

  24. Lakhal, N.M.B., Adouane, L., Nasri, O., Slama, J.B.H.: Risk management for intelligent vehicles based on interval analysis of TTC. IFAC-PapersOnLine 52(8), 338–343 (2019). 10th IFAC Symposium on Intelligent Autonomous Vehicles IAV 2019

    Google Scholar 

  25. Lakhal., N.M.B., Nasri., O., Adouane., L., Slama., J.B.H.: Reliable modeling for safe navigation of intelligent vehicles: analysis of first and second order set-membership TTC. In: Proceedings of the 17th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, pp. 545–552. INSTICC, SciTePress (2020)

    Google Scholar 

  26. Lange, R., de Oliveira, R.S., Vasques, F.: A reference model for the timing analysis of heterogeneous automotive networks. Comput. Stand. Interfaces 45, 13–25 (2016)

    Article  Google Scholar 

  27. Lee, H., Ra, M., Kim, W.: Nighttime data augmentation using GAN for improving blind-spot detection. IEEE Access 8, 48049–48059 (2020)

    Article  Google Scholar 

  28. Lozenguez, G., Adouane, L., Beynier, A., Martinet, P., Mouaddib, A.I.: Map partitioning to approximate an exploration strategy in mobile robotics. In: Demazeau, Y., Pěchoucěk, M., Corchado, J.M., Pérez, J.B. (eds.) Advances on Practical Applications of Agents and Multiagent Systems. Advances in Intelligent and Soft Computing, vol. 88. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19875-5_8

    Chapter  Google Scholar 

  29. Makridis, M., Mattas, K., Ciuffo, B.: Response time and time headway of an adaptive cruise control. an empirical characterization and potential impacts on road capacity. IEEE Trans. Intell. Transp. Syst. 21(4), 1677–1686 (2020)

    Google Scholar 

  30. Moore, R., Kearfott, R., Cloud, M.: Introduction to Interval Analysis. Society for Industrial and Applied Mathematics, Philadelphia (2009)

    Book  Google Scholar 

  31. Nasri, O., Lakhal, N.M.B., Adouane, L., Slama, J.B.H.: Automotive decentralized diagnosis based on can real-time analysis. J. Syst. Architect. 98, 249–258 (2019). https://doi.org/10.1016/j.sysarc.2019.01.009

    Article  Google Scholar 

  32. Nicola, J., Jaulin, L.: Comparison of Kalman and interval approaches for the simultaneous localization and mapping of an underwater vehicle. In: Jaulin, L., et al. (eds.) Marine Robotics and Applications. OEO, vol. 10, pp. 117–136. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-70724-2_8

    Chapter  Google Scholar 

  33. Park, J., Abdel-Aty, M., Wu, Y., Mattei, I.: Enhancing in-vehicle driving assistance information under connected vehicle environment. IEEE Trans. Intell. Transp. Syst. 20(9), 3558–3567 (2019)

    Article  Google Scholar 

  34. Quaglia, D., Muradore, R.: Communication-aware bandwidth-optimized predictive control of motor drives in electric vehicles. IEEE Trans. Industr. Electron. 63(9), 5602–5611 (2016)

    Article  Google Scholar 

  35. Rigatos, G.G.: Nonlinear Kalman filters and particle filters for integrated navigation of unmanned aerial vehicles. Robot. Auton. Syst. 60(7), 978–995 (2012)

    Article  Google Scholar 

  36. Rump, S.: INTLAB - INTerval LABoratory. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers, Dordrecht (1999)

    Chapter  Google Scholar 

  37. Tabernik, D., Skočaj, D.: Deep learning for large-scale traffic-sign detection and recognition. IEEE Trans. Intell. Transp. Syst. 21(4), 1427–1440 (2020)

    Article  Google Scholar 

  38. Talal, M., Ramli, K.N., Zaidan, A., Zaidan, B., Jumaa, F.: Review on car-following sensor based and data-generation mapping for safety and traffic management and road map toward ITS. Veh. Commun. 25, 100280 (2020)

    Google Scholar 

  39. Vogt, P., Lenz, E., Klug, A., Westerfeld, H., Konigorski, U.: Robust two-degree-of-freedom wheel slip controller structure for anti-lock braking. IFAC-PapersOnLine 52(5), 431–437 (2019). 9th IFAC Symposium on Advances in Automotive Control AAC 2019

    Google Scholar 

  40. Wang, S., Wang, W., Chen, B., Tse, C.K.: Convergence analysis of nonlinear Kalman filters with novel innovation-based method. Neurocomputing 289, 188–194 (2018)

    Article  Google Scholar 

  41. Ward, J.R., Agamennoni, G., Worrall, S., Bender, A., Nebot, E.: Extending time to collision for probabilistic reasoning in general traffic scenarios. Transp. Res. Part C: Emerg. Technol. 51, 66–82 (2015)

    Article  Google Scholar 

  42. Xia, B., Shang, Y., Nguyen, T., Mi, C.: A correlation based fault detection method for short circuits in battery packs. J. Power Sources 337, 1–10 (2017)

    Article  Google Scholar 

  43. Xie, G., Zeng, G., Liu, L., Li, R., Li, K.: High performance real-time scheduling of multiple mixed-criticality functions in heterogeneous distributed embedded systems. J. Syst. Architect. 70, 3–14 (2016)

    Article  Google Scholar 

  44. Yang, W., Wan, B., Qu, X.: A forward collision warning system using driving intention recognition of the front vehicle and V2V communication. IEEE Access 8, 11268–11278 (2020)

    Article  Google Scholar 

  45. Zhang, M., Deng, J.: Number of zeros of interval polynomials. J. Comput. Appl. Math. 237(1), 102–110 (2013)

    Article  MathSciNet  Google Scholar 

  46. Zhang, W., Zheng, Y., Gao, Q., Mi, Z.: Part-aware region proposal for vehicle detection in high occlusion environment. IEEE Access 7, 100383–100393 (2019)

    Article  Google Scholar 

  47. Zhu, X., Zhang, H., Wang, J., Fang, Z.: Robust lateral motion control of electric ground vehicles with random network-induced delays. IEEE Trans. Veh. Technol. 64(11), 4985–4995 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The present work is supported by the WOW (Wide Open to the World) program of the CAP 20-25 project. It receives also the support of IMobS3 Laboratory of Excellence (ANR-10-LABX-16-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadhir Mansour Ben Lakhal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ben Lakhal, N.M., Nasri, O., Adouane, L., Ben Hadj Slama, J. (2022). Satisfaction of Modeling Requirements for Intelligent Navigation Systems: Risk Management Context. In: Gusikhin, O., Madani, K., Zaytoon, J. (eds) Informatics in Control, Automation and Robotics. ICINCO 2020. Lecture Notes in Electrical Engineering, vol 793. Springer, Cham. https://doi.org/10.1007/978-3-030-92442-3_23

Download citation

Publish with us

Policies and ethics