
Cryptanalysis of the Privacy-Preserving
Ride-Hailing Service TRACE

Deepak Kumaraswamy1[0000−1111−2222−3333] and
Srinivas Vivek2[0000−0002−8426−0859]

1 National Institute of Technology Karnataka, India
deepakkumaraswamy99@gmail.com

2 International Institute of Information Technology Bangalore, India
srinivas.vivek@iiitb.ac.in

Abstract. In a typical ride-hailing service, the service provider (RS)
matches a customer (RC) with the closest vehicle (RV) registered to this
service. Ride-hailing services have gained tremendous popularity over the
past years, and several works have been proposed to ensure privacy of
riders and drivers during ride-matching. TRACE is an efficient privacy-
preserving ride-hailing service proposed by Wang et al. (IEEE Trans. Ve-
hicular Technology 2018). TRACE uses masking along with other cryp-
tographic techniques to ensure efficient and accurate ride-matching. RS
computes a (secret) spatial division of a region into quadrants. The RS
uses masked location information to match RCs and RVs within a quad-
rant without obtaining their exact locations, thus ensuring privacy. Ad-
ditionally, an RC only gets to know location of the closest RV finally
matched to it, and not of other responding RVs in the region.

In this work, we disprove the privacy claims in TRACE by showing the
following: a) RCs and RVs can identify the secret spatial division main-
tained by RS (this reveals information about the density of RVs in the
region and other potential trade secrets), and b) the RS can identify exact
locations of RCs and RVs (this violates location privacy). Prior to ex-
changing encrypted messages in the TRACE protocol, each entity masks
the plaintext message with a secret unknown to others. Our attack allows
other entities to recover this plaintext from the masked value by exploit-
ing shared randomness used across different messages, that eventually
leads to a system of linear equations in the unknown plaintexts. This
holds even when all the participating entities are honest-but-curious. We
implement our attack and demonstrate its efficiency and high success
rate. For the security parameters recommended for TRACE, an RV can
recover the spatial division in less than a minute, and the RS can recover
the location of an RV in less than a second on a commodity laptop.

Keywords: Location Privacy · Privacy-Preserving Protocols · Ride-
Hailing Services · Cryptanalysis · Random Masking

© Springer Nature Switzerland AG 2021. The final published version is available
at www.springerlink.com. DoI: 10.1007/978-3-030-92518-5

ar
X

iv
:2

11
1.

05
23

8v
2

 [
cs

.C
R

]
 2

4
D

ec
 2

02
1

www.springerlink.com

1 Introduction

Ride-hailing services such as Uber and Lyft have become a popular choice of
transportation in the past decade [9]. By offering convenience and reliability
to its customers, these services are well suited for intra-city commutes. A ride-
hailing service usually consists of three entities: the ride-hailing server (RS),
riders or customers (RCs) and drivers or vehicles (RVs). The RS is primarily
responsible for hosting the ride-hailing service publicly. Drivers can register to
this service and become identified as certified RVs. A customer who wishes to
make use of this service can sign up as an RC and request for a ride. Depending
on the pick-up and destination locations, the RS smartly forwards this ride
request from RC to suitable RVs in the region. A list of nearby available RVs
is revealed to the RC along with their reputations, who then makes a suitable
choice.

However, revealing locations of RCs/RVs to other entities can have severe
consequences. A pick-up location could correspond to the residential address
of an RC, which can be used for stalking/kidnapping. There have also been
instances when RVs registered to a particular ride-hailing service have been
targeted by regular taxi drivers or targeted for theft [14,4]. Preserving privacy of
sensitive users’ locations has become a primary concern in ride-hailing services.
Generally, the RS is assumed to be honest-but-curious. This means that RS tries
to learn as much information as possible without maliciously deviating from the
ride-hailing protocol. Such a model is reasonable to assume since the RS wishes
to preserve its reputation among the public. But it is still dangerous for the
RS to learn locations of RCs and RVs, in case the RS later turns malicious or
becomes a victim of cyberattacks [3,8].

In the past few years, there have been many works that focus on ensuring
location privacy of RCs and RVs in the context of ride-hailing services. Section 5
contains an overview of recent papers in this area. These works use cryptographic
primitives to hide sensitive location information from the RS, while trying to
ensure efficiency and ride-matching accuracy.

In this paper, we focus on TRACE [16], proposed by Wang et. al. in 2018.
TRACE is a privacy-preserving solution to ride-hailing services. Here, the RS
first spatially divides each city into quadrants. RCs and RVs mask their sensi-
tive location information using randomness and then forward it to RS. The RS
then identifies the quadrant in which RCs and RVs lie, without finding out their
exact locations. To ensure efficiency and accuracy, the ride request from an RC
is forwarded only to RVs that are in the same quadrant as RC. The RC then
makes a choice among RVs that lie in its vicinity to finalize ride establishment.
Since the RS knows the distribution of RVs in different quadrants, it can period-
ically change its spatial division of the city to optimize bandwidth usage, reduce
waiting time and improve accuracy.

TRACE uses masking with random secrets to prevent other entities of the
protocol from learning the underlying message. At a high level, a large prime p is
chosen and the plaintext is multiplied with a random integer in Zp. These masked
messages are encrypted using shared keys to prevent external eavesdroppers from

2

gaining any useful information. Since TRACE uses lightweight cryptographic
techniques and simple modular arithmetic, it is efficient in practice. The security
guarantees for TRACE state that RS cannot learn about the exact locations of
RCs and RVs apart from the quadrant they are in. Additionally, RCs and RVs
cannot learn about the secret spatial division maintained by RS, since this could
reveal the density of drivers across the city, among other proprietary information
and trade secrets of RS.

1.1 Our Contribution

We propose an attack on TRACE and disprove the above security claims by
showing that the RS can indeed retrieve the exact locations of all RCs and RVs.
Secondly, we show that RCs and RVs can learn the secret spatial division infor-
mation maintained by RS. These attacks constitute a total break of the privacy
objectives of TRACE. The underlying idea behind our attack is to eliminate
the (unknown) randomness shared across different messages when other entities
mask their location values. This allows one to efficiently obtain an overdeter-
mined system of linear (modular) equations in the unknown plaintext locations.
We stress that this attack is purely algebraic, and does not make any geometric
assumptions about the region. Our attack is efficient (runs in time quadratic in
the security parameters) and holds even when all entities are honest-but-curious.
For instance, with the recommended security parameters from [16], an RV can
recover the quadtree maintained by RS in under a minute (see Table 2) and the
RS can recover the exact location of an RV in under a second (see Table 3).

The rest of our paper is organized as follows. In Section 2, we describe relevant
steps of the TRACE protocol from [16]. The first attack in Section 3.1 describes
how RCs and RVs can recover the secret quadtree maintained by RS. The second
attack in Section 3.2 describes how the RS can recover exact locations of RCs
and RVs. We briefly discuss a modification to the TRACE protocol that prevents
only the first attack, and argue that the second attack (which is more severe
than the first) is hard to thwart. Algorithms 1 and 2 summarize the above two
attacks. Section 4 provides details about our experimental setup and evaluates
the efficiency and success rate of our attack in practice (refer Tables 2 and 3).
Section 5 gives an overview of recent works in the area of privacy-preserving
ride-hailing services. We conclude our paper and provide remarks about future
work in Section 6.

2 Overview of TRACE

This section contains a high level overview of the TRACE protocol [16]. Details
that are not directly relevant to our attack will be omitted. For more information
the reader is referred to the original paper.

3

2.1 Preliminaries

A quadtree {N1, . . . , Nm} with m nodes is a data structure used to represent the
partition of a 2-D space into quadrants and subquadrants. Each node Ni in the
tree is associated with four (x, y) coordinates denoting corners of the quadrant
represented by that node. Every non-leaf node in the quadtree has four children
denoting the division of that quadrant into four subquadrants. An example is
presented in Figure 1.

Fig. 1. Example of a quadtree

Given a point P = (x, y) and a quadrant {(xj , yj)} with j = 1, . . . , 4, we can
easily check if P lies within the quadrant by doing the following [16, Section III].
For each j compute

Sj = (xyj + yxj′ + xjyj′)− (xyj′ + yxj + xj′yj) (1)

where j′ = (j mod 4) + 1. If all Sj ≥ 0, then P lies within the quadrant,
otherwise it does not. Given a quadtree, this idea can be extended to find the
quadrant/node of the tree in which P lies. Starting at the root, among its four
children, find that quadrant/node in which P lies; then recurse on its children
until a leaf is encountered.

2.2 System Design and Security Goals

System Design. The three primary entities in the TRACE protocol are the
ride-hailing server/service provider (RS), the customer/rider (RC) and the ve-
hicle/driver (RV). All of the aforementioned entities are assumed to be honest-
but-curious. This means that they wish to learn as much information as they
can about the other entities without violating any protocol steps.

RS is mainly responsible for forwarding requests/responses between RCs and
RVs. As part of the protocol, RS maintains a spatial division of the city into
quadrants and uses it to identify regions in which RCs and RVs lie. It does
so in such a way that RCs and RVs do not learn any information about the
spatial division, while RS does not learn the exact locations of RCs and RVs.
The RC can choose a pick-up point and send a ride-hailing request to RS, who
then forwards it to the RVs that lie in close vicinity of RC. RVs submit their

4

masked location information to RS at regular intervals, allowing the RS to have
an idea of distribution of RVs in the city. Depending on the density of RVs, RS
can periodically optimize its space division to improve ride-matching accuracy.

Threat Model. We assume the same threat model that is considered in
TRACE. All entities are assumed to be honest-but-curious, that is, they follow
the protocol specification but may infer additional data from the observed tran-
scripts. RS does not collude with RCs and RVs (to try and obtain information
about customers), since it has an incentive to maintain high reputation.

Security Goals. It is essential to ensure that location information of RCs
and RVs is not revealed to other entities. The spatial division maintained by
RS should also be kept secret, as this could reveal information about density
of drivers in a city and other proprietary information/trade secrets of RS. The
authors of TRACE claim that the following security requirements are satisfied
during the protocol execution.

Claim 1 RS creates a quadtree N containing information about spatial divison
of the city into quadrants, and masks it with a randomly chosen secret to compute
EN . Given EN , RCs and RVs do not learn anything about N .

Claim 2 RS can only learn the quadrants in which RCs lie. RS does not obtain
any other information about the exact pick-up locations of RCs.

Claim 3 RS can only learn the quadrants in which RVs lie. RS does not obtain
any other information about the exact locations of RVs.

2.3 TRACE Protocol

This section describes the execution of the TRACE protocol. Figure 2 gives a
summarized view of the messages exchanged between different entities. RS acts
as a central entity for forwarding messages between RCs and RVs. It establishes
shared keys with RCs and RVs through the Diffie-Hellman key exchange. All
messages exchanged between RS and RCs, RVs are encrypted using a symmetric
encryption scheme. The authentication of entities is ensured by signing these
messages using the BLS signature scheme [1]. The notations used in the TRACE
protocol and their descriptions are provided in Table 1.

For convenience, the remainder of this paper shall refer to subscripts (·)i,j
and (·)i,j,l as simply (·)ij and (·)ijl, respectively.

Step 0. RS publishes details about different system parameters (for exam-
ple, the group and its generator used in the signature scheme, public key of RS,
choice of symmetric encryption). RCs and RVs also establish their public keys.
RS announces security parameters k1, k2, k3, k4. As we shall see subsequently,
they specify the size of different randomness used when masking location infor-
mation. Step 3 elaborates on the constraint that should exist among these four
parameters to ensure correctness of the protocol.

RS chooses two large public primes p and α (of size k1 bits and k2 bits,
respectively) and a random secret s ∈ Z∗p known only to itself.

5

Fig. 2. Overview of TRACE protocol

6

Notation Description

RS Ride-hailing server (service provider)

RC Customer (rider)

RV Vehicle (driver)

k1, k2, k3, k4 Security parameters of TRACE

N Spatial division (quadtree) maintained by RS

α, p Large primes chosen by RS

α′, p′ Large primes chosen by RC

(xNij , yNij) Coordinates of j-th vertex in the i-th quadtree node Ni

s, ajh Random values used by RS when masking N

EN Masked quadtree computed by RS

(xV , yV) Coordinates of RV

rij Random values chosen by RV when masking (xV , yV)

π(·) Random permutation chosen by RV

A Data aggregated by masking (xV , yV) and EN

(xCP , yCP) Pick-up coordinates of RC

SRC Square with (xCP , yCP) at its center

R Length of a side of SRC

s′, di Random values used by RC when masking (xCP , yCP)

C1, . . . , C5 Data aggregated by masking (xCP , yCP) and EN

Table 1. Description of the notations used in the TRACE protocol.

Step 1. RS divides the two-dimensional space into squares or rectangles
represented by a quadtree

N = {N1, N2, . . . , Nm}

with m nodes. The i-th quadrant Ni has four corners {Nij = (xNij , yNij)} where
j = 1, . . . , 4. RS wishes to learn the quadrant in which each RV lies without
learning its exact location. To do this, RS sends a masked version of Ni to RV.
Concretely, RS chooses 24 random values ajh (j = 1, . . . , 4;h = 1, . . . , 6) of size
k3 bits each. For every vertex Nij of Ni, let Nij′ be the vertex adjacent to it
in the anticlockwise direction, i.e. j′ = (j mod 4) + 1. RS masks this vertex by

7

computing

ENij1 = s(xNij · α+ aj1) mod p ,

ENij2 = s(yNij · α+ aj2) mod p ,

ENij3 = s(xNij′ · α+ aj3) mod p ,

ENij4 = s(yNij′ · α+ aj4) mod p ,

ENij5 = s(xNij · yNij′ · α+ aj5) mod p ,

ENij6 = s(xNij′ · yNij · α+ aj6) mod p .

The values α, p are public, whereas s, xNij , yNij are only known to RS. The
masked coordinate is

ENij = ENij1‖ENij2‖ENij3‖ENij4‖ENij5‖ENij6 ,

where ‖ denotes concatenation. Next, RS computes the masked quadrant

ENi = ENi1‖ENi2‖ENi3‖ENi4,

for i = 1, . . . ,m, to get the masked quadtree

EN = {EN1, EN2, . . . , ENm}.

It then encrypts EN and forwards it to RV.
Step 2. RV decrypts this message and uses EN along with its own random-

ness to mask its location (xV , yV). For i = 1, . . . ,m; j = 1 . . . , 4, RV chooses a
fresh random number rij (each k4 bits long) and computes

Aij1 = rij · α(xV · ENij4 + yV · ENij1 + ENij6) mod p ,

Aij2 = rij · α(xV · ENij2 + yV · ENij3 + ENij5) mod p ,

Aij = Aij1‖Aij2 .

RV chooses a random permutation π(·) to reorder the j-indices for each Ai.
That is,

Ai = Aiπ(1)‖Aiπ(2)‖Aiπ(3)‖Aiπ(4),
A = {A1, . . . , Am}.

The order within each Aiπ(j) is still preserved, that is,

Aiπ(j) = Aiπ(j)1‖Aiπ(j)2.

RV encrypts A and forwards it to RS.
Step 3. RS obtains A that contains the masked location of each RV, and does

the following computations to identify the quadrant/node Ni of the quadtree in
which RV lies.

8

Bij1 = s−1 ·Aij1 mod p

= s−1 · rij · α(xV · ENij4 + yV · ENij1 + ENij6) mod p

= s−1 · rij · s[α2(xV · yNij′ + yV · xNij + xNij′ · yNij)
+ α(xV · aj4 + yV · aj1 + aj6)] mod p .

B′ij1 =
Bij1 − (Bij1 mod α2)

α2

= rij(xV · yNij′ + yV · xNij + xNij′ · yNij) .

Similarly,

Bij2 = s−1 ·Aij2 mod p ,

B′ij2 =
Bij2 − (Bij2 mod α2)

α2

= rij(xV · yNij + yV · xNij′ + xNij · yNij′) .

Next, RS computes the difference

Bij = B′ij2 −B′ij1
= rij [(xV · yNij + yV · xNij′ + xNij · yNij′)
− (xV · yNij′ + yV · xNij + xNij′ · yNij)] .

Compare this to Equation (1). Since rij is always positive, RS can identify
whether RV lies in Ni by checking if Bij is positive for all j = 1, . . . , 4. Using
the method described in Section 2.1, RS can query the quadtree to identify the
exact quadrant where RV lies.

Note that it was necessary to remove the modulus with respect to p when
obtaining B′ij1 and B′ij2, otherwise those values would always be positive ir-
respective of whether RV was inside the quadrant Ni or not. To remove this
modulus it is sufficient if the following is always true during the computation of
Bij1 (a similar condition exists for Bij2).

rij [α
2(xV · yNij′ + yV · xNij + xNij′ · yNij)

+ α(xV · aj4 + yV · aj1 + aj6)] < p ,

rij · α(xV · aj4 + yV · aj1 + aj6) < α2 ,

rij · α(xV · aj2 + yV · aj3 + aj5) < α2 .

Let 〈·〉 denote the bit length of a non-negative integer. Recall that 〈p〉 = k1, 〈α〉 =
k2, 〈ajh〉 = k3, 〈rij〉 = k4. To ensure the above conditions hold, the parameters
are chosen such that

k4 + 2k2 < k1 ,

k2 + k3 < k1 ,

k3 + k4 < k2 . (2)

9

Moreover, the size of location coordinates are assumed to be negligible compared
to these security parameters. In [16], the above values are set as k1 = 512, k2 =
160, k3 = 75, k4 = 75.

Step 4. RC receives EN from RS. Now the RC tries to mask its location
with respect to the quadtree and send it to RS. Suppose the pick-up point of
RC is (xCP , yCP). RC chooses a square SRC of side 2R (where R is ≥ 1 km)
with this pickup point at its center. Let the vertices of this square be {(xS1, yS1),
(xS2, yS2), (xS3, yS3), (xS4, yS4)}. Recall that in Step 2, each RV masked its loca-
tion (xV , yV) with respect to EN and computed A. RC also does an equivalent
computation here; after receiving EN from RS, it computes a masking for each
of the four vertices of SRC to obtain C = C1‖C2‖C3‖C4.

Next, RC chooses a public prime p′ of size k1 bits, a public prime α′ of k2
bits, a secret s′ ∈ Z∗p′ and 4 random values di of k4 bits each. It computes

D1 = s′(xCP · α′ + d1) mod p′ ,

D2 = s′(yCP · α′ + d2) mod p′ ,

D3 = s′ · d3 mod p′ ,

D4 = s′ · d4 mod p′ ,

D = D1‖D2‖D3‖D4 ,

E = x2CP + y2CP −R2 .

RC encrypts C,D,E and sends it to RS.

Step 5. The goal here is to convey the masked location information from
RC to RVs that are “nearby” to it. RS decrypts the message from RC to get
C,D,E. Similar to Step 3, for each of C1, C2, C3, C4, RS obtains the quadrant
in which the vertex represented by Ci (i.e. (xSi, ySi)) lies. With this RS knows
the quadrants in which the corners of square SRC lies. RS can construct a region
CSRC enclosing SRC . From Step 3, RS also knows the quadrants in which each
RV lies. RS encrypts D,E and sends it to those RVs that lie in CSRC (call these
RVs as SRVs).

Step 6. SRV receives D,E from RS and tries to add in masked information
about its own location (xSV , ySV) to these values. It chooses three random ri’s
of k4 bits each and computes

F1 = xSV · α′ ·D1 mod p′ ,

F2 = ySV · α′ ·D2 mod p′ ,

F3 = r1 ·D3 mod p′ ,

F4 = r2 ·D4 mod p′ ,

F = r3(F1 + F2 + F3 + F4) ,

I = r3(x2SV + y2SV + E) .

SRV encrypts and sends I, F to RC via RS.

10

Step 7. RC uses I, F (that contain masked information of RC’s and SRVs’
locations) to check if that SRV is within distance R.

J = s′
−1 · F mod p′

= s′
−1 · s′ · r3[α′

2
(xCP · xSV + yCP · ySV)

+ α′(xSV · d1 + ySV · d2) + r1 · d3 + r2 · d4] mod p′ ,

J ′ =
J − (J mod α′2)

α′2
= r3(xCP · xSV + yCP · ySV) ,

K = I − 2J ′

= r3[x2CP + y2CP + x2SV + y2SV

− 2(xCP · xSV + yCP · ySV)−R2]

= r3[(xCP − xSV)2 − (yCP − ySV)2 −R2] .

When K ≤ 0, the SRV is within the circle query range CRC of radius R around
RC. Call such SRVs as CRVs.

Once again (similar to Step 3) we need to eliminate the modulus with respect
to p′ (otherwise K would always be positive even if the SRV had distance > R).
With the relationship imposed on the security parameters (Equation (2) in Step
3), the following condition holds and the modulus is removed.

r3[α′
2
(xCP · xSV + yCP · ySV)

+ α′(xSV · d1 + ySV · d2) + r1 · d3 + r2 · d4] < p′ ,

r5[α′(xSV · d1 + ySV · d2) + r1 · d3 + r2 · d4] < α′
2
.

Step 8. RC masks its take-off point (xCT , yCT) using EN (similar to Step
2) to create C5, and forwards C5 along with the list of CRVs to RS. (The take-
off point usually lies very close to the RC’s pick-up point from Step 4). Similar
to Step 3, RS uses C5 to identify the subregion in which the take-off point
lies. RS chooses a random location ATP in this subregion and forwards it to
CRVs. Each CRV inspects ATP to make a decision on whether to accept this
ride-hailing request from RC. The CRVs who decide to accept send an “Accept
Response” to RS. RS forwards the list of ready and available CRVs to RC. RC
chooses a suitable CRV from this list, and this CRV is informed about the same
by RS. Later, the RC and the chosen CRV proceed with ride establishment by
negotiating a shared session key and by exchanging information such as location,
phone number, reputation, etc.

3 Attack on TRACE

This section presents two attacks which (with high empirical probability) dis-
prove the following privacy claims made about TRACE. First, in Section 3.1,
we show that RCs and RVs can obtain the secret spatial division (quadtree)

11

information maintained by RS (violation of Claim 1). We also discuss a modi-
fication to the TRACE protocol, as a countermeasure for this attack. Secondly,
in Section 3.2, we show how the RS can identify exact locations of all RCs and
RVs (violation of Claims 2, 3). We also briefly argue why this attack is not
straightforward to thwart. In both attacks, the entities recover location coordi-
nates modulo prime p. This is same as recovering the actual integer values since
p is a very large prime and the coordinate values are negligibly small compared
to p.

Steps from the TRACE protocol described in Section 2.3 will be referred
as and when needed. In Section 4, we shall experimentally evaluate the success
probability of our attacks.

3.1 RCs, RVs obtain Quadtree

After an RV receives the masked quadtree EN computed by RS (Step 2), we
show how it can recover all underlying vertices xNij , yNij of the quadtree’s nodes.
This same principle allows an RC to obtain information about the quadtree as
well (recall that each RC receives EN from RS in Step 4).

Intuition. Intuitively, our attack works as follows. Each quadtree node Ni
is masked by the RS using random values s, α, ajh, resulting in ENi. When
an RV receives EN1, . . . , ENm, it knows p, α but does not know s, ajh. For a
single ENi, the number of equations involved is 4 × 6 = 24 (since there is one
equation for each ENijh, j = 1, . . . , 4;h = 1, . . . , 6). The number of unknowns
involved in ENi is 1 + 24 + 8 = 33 (s, ajh’s and quadrant vertices xNij , yNij ,
j = 1, . . . , 4;h = 1, . . . , 6). A key observation is that if one considers ENi along
with a different ENi′ , the number of equations is 24 + 24 = 48. However the
number of unknowns involved is 1+24+8+8 = 41 (s, ajh’s and quadrant vertices
xNij , yNij , xNi′j , yNi′j , where j = 1, . . . , 4;h = 1, . . . , 6). That is, considering an
additional ENi′ gives 24 new equations but introduces only 8 new variables.
This would allow RV to solve this system of modular equations and obtain the
secrets s along with quadrant vertices of Ni and Ni′ .

Formal attack. Without loss of generality, we show how an RV can recover
vertices of quadrants N1, N2 when given EN1, EN2 (i.e. i = 1, i′ = 2). The first
task is to eliminate the unknown randomness ajh, j = 1, . . . , 4;h = 1, . . . , 6.
This can be done by subtracting EN2jh from EN1jh. For h = 1, . . . , 6, we get
the following equations.

EN1j1 − EN2j1 = sα(xN1j − xN2j) mod p , (3)

EN1j2 − EN2j2 = sα(yN1j − yN2j) mod p , (4)

EN1j3 − EN2j3 = sα(xN1j′ − xN2j′) mod p , (5)

EN1j4 − EN2j4 = sα(yN1j′ − yN2j′) mod p , (6)

EN1j5 − EN2j5 = sα(xN1jyN1j′ − xN2jyN2j′) mod p , (7)

EN1j6 − EN2j6 = sα(xN1j′yN1j − xN2j′yN2j) mod p . (8)

12

Here j′ = (j mod 4)+1. The parameters s, α are unknown to RV along with the
16 variables xN1j , yN1j , xN2j , yN2j , j = 1, . . . , 4. RV can obtain linear (modular)
equations in these variables by eliminating s, α as follows.

Compare (3)× yN1j′ + (6)× xN2j and (7):

(EN1j1 − EN2j1)× yN1j′ + (EN1j4 − EN2j4)× xN2j

= sα(xN1jyN1j′ − xN2jyN1j′ + yN1j′xN2j − yN2j′xN2j)

= sα(xN1jyN1j′ − xN2jyN2j′)

= (EN1j5 − EN2j5) mod p . (9)

Compare (3)× yN2j′ + (6)× xN1j and (7):

(EN1j1 − EN2j1)× yN2j′ + (EN1j4 − EN2j4)× xN1j

= sα(xN1jyN2j′ − xN2jyN2j′ + yN1j′xN1j − yN2j′xN1j)

= sα(xN1jyN1j′ − xN2jyN2j′)

= (EN1j5 − EN2j5) mod p . (10)

Compare (4)× xN1j′ + (5)× yN2j and (8):

(EN1j2 − EN2j2)× xN1j′ + (EN1j3 − EN2j3)× yN2j

= sα(yN1jxN1j′ − yN2jxN1j′ + xN1j′yN2j − xN2j′yN2j)

= sα(xN1j′yN1j − xN2j′yN2j)

= (EN1j6 − EN2j6) mod p . (11)

Compare (4)× xN2j′ + (5)× yN1j and (8):

(EN1j2 − EN2j2)× xN2j′ + (EN1j3 − EN2j3)× yN1j

= sα(yN1jxN2j′ − yN2jxN2j′ + xN1j′yN1j − xN2j′yN1j)

= sα(xN1j′yN1j − xN2j′yN2j)

= (EN1j6 − EN2j6) mod p . (12)

Compare (3) and (4):

(EN1j1 − EN2j1)× sα(yN1j − yN2j)

= (EN1j2 − EN2j2)× sα(xN1j − xN2j) mod p ,

⇒ (EN1j2 − EN2j2)(xN1j − xN2j)

− (EN1j1 − EN2j1)(yN1j − yN2j) = 0 mod p . (13)

Similarly, compare (4) and (5), and (5) and (6):

(EN1j3 − EN2j3)(yN1j − yN2j)

− (EN1j2 − EN2j2)(xN1j′ − xN2j′) = 0 mod p , (14)

(EN1j4 − EN2j4)(xN1j′ − xN2j′)

− (EN1j3 − EN2j3)(yN1j′ − yN2j′) = 0 mod p . (15)

13

Consider Equations (9)—(15) for all j = 1, . . . , 4; j′ = (j mod 4)+1. There
are 28 linear (modular) equations in the 16 unknowns (xN1j , yN1j), (xN2j , yN2j);
j = 1, . . . , 4. This can be treated as a linear system of equations with elements
from the field Zp, and standard techniques from linear algebra such as Gaussian
Elimination can be applied to find solutions for X in Zp.

Existence of a unique solution Suppose we represent Equations (9)—(15)
using matrix notation as PX = Q, where dim(P) = 28× 16, dim(X) = 16× 1,
dim(Q) = 28× 1, and vector X represents the 16 unknown quadrant vertices of
N1, N2. We observed that rank(P) ≤ 13 < 16, and the RV cannot obtain unique
solutions for X from this system.

Hence we propose a modification to our attack such that rank(P) equals the
number of unknowns. Previously, considering only N1, N2 gave us 28 equations
and 8 × 2 = 16 unknowns. If we instead consider N1, N2, N3 and take

(
3
2

)
= 3

pairwise combinations, we end up with 28 × 3 = 84 equations and 8 × 3 = 24
unknowns (which is slightly better). But we observed that in some cases, the
resulting 84× 24 matrix P had rank 23 < 24. Next, considering N1, N2, N3, N4

and taking
(
4
2

)
= 6 pairwise combinations gives us 28 × 6 = 168 equations and

8 × 4 = 32 unknowns. We observed (from experiments described in Section 4)
that the corresponding 168 × 32 matrix P always had rank 32, and an RV can
therefore solve this system to get the unique values (in Zp) of quadrant vertices
for N1, . . . , N4. One can proceed further and consider more Ni, but that would
be redundant since rank already equals the number of unknowns.

We now formalize the above idea. Let the linear system defined by Equations
(9)—(15) (for vertices of N1, N2) be denoted byPN1N2 PN2N1

[XN1

XN2

]
=

QN1N2

 . (16)

Here PN1N2, XN1 and PN2N1, XN2 are submatrices corresponding to un-
known vertices ofN1 andN2, respectively. Note that dim(PN1N2) = dim(PN2N1) =
28 × 8, dim(XN1) = dim(XN2) = 8 × 1, dim(QN1N2) = 28 × 1. In the same
manner, take all

(
4
2

)
= 6 pairwise combinations Ni, N

′
i ; 1 ≤ i < i′ ≤ 4 from

N1, N2, N3, N4 and compute PNiNi′ , XNi, PNi′Ni, XNi′ , QNiNi′ . Define a linear
system that considers all the above systems simultaneously.

PX = Q ,

PN1N2 PN2N1 0 0
PN1N3 0 PN3N1 0
PN1N4 0 0 PN4N1

0 PN2N3 PN3N2 0
0 PN2N4 0 PN4N2

0 0 PN3N4 PN4N3

XN1

XN2

XN3

XN4

 =

QN1N2

QN1N3

QN1N4

QN2N3

QN2N4

QN3N4

 . (17)

Here 0 denotes the zero matrix of dimension 28×8, dim(P) = 168×32, dim(X) =
32× 1, dim(Q) = 168× 1 and rank(P) is experimentally observed to be 32. The

14

Algorithm 1: RV recovers quadtree

Input : Size of quadtree m, masked quadtree EN = (EN1, . . . , ENm)
Output: Underlying quadrant vertices N = (N1, . . . , Nm)
Procedure Recover Quadtree(m, EN) :

while size(EN) > 0 do
Pick four random entries ENa, ENb, ENc, ENd and delete them from
EN

for each of the
(
4
2

)
pairwise combinations (i, i′) from a, b, c, d do

Obtain a linear system in the unknown vertices of Ni, N
′
i using

equations similar to (9)—(15)
Let the corresponding matrices be PNiNi′ , XNi, PNi′Ni, XNi′ ,
QNiNi′ similar to (16)

end
Using the above matrices, define the system PX = Q similar to (17)
Solve this system to obtain quadrant vertices corresponding to
Na, Nb, Nc, Nd

end
Output: (N1, . . . , Nm)

RV can solve this system to obtain unique solutions for X (i.e. quadrant vertices
of N1, . . . , N4) in Zp.

Note that there is no restriction here to use equations for the first four quad-
rants N1, . . . , N4. The RV can consider equations corresponding to any four
distinct Ni and find their underlying vertices. The above steps are repeated for
other quadrants as well, until all of them are recovered. We summarize the at-
tack in Algorithm 1. The same idea also allows an RC to recover the quadtree,
when it receives EN from RS.

We remark that this attack is purely algebraic and does not make any as-
sumptions about geometry of the region. The same attack would still work even
if quadrants in the spatial division were not restricted to rectangles/squares.

Complexity. The linear system of equations represented by PX = Q, where
dim(P) = 168×32, dim(X) = 32×1, dim(Q) = 168×1, and all operations are in
the field Zp, can be solved in time O((log p)2) = O(k21) [2]. We need to repeatedly
solve such a system dm/4e times to recover vertices of all m quadrants. The
total asymptotic complexity of this attack is O(k21m). Our attack is efficient in
practice, and Table 2 shows the average time taken to recover quadrant vertices
for varying tree sizes and security parameters.

Remark. The aforementioned attack mainly relies on the fact that TRACE
uses the same set of 24 random values ajh, j = 1, . . . , 4;h = 1, . . . , 6 through-
out all ENi, i = 1, . . . ,m (refer to Step 1 of the TRACE protocol in Sec-
tion 2.3). However, upon careful observation, one can see that the correct-
ness of the TRACE protocol would still hold if different set of values of ajh
were used for each ENi. That is, sample 24 × m independent random values
aijh, i = 1, . . . ,m; j = 1, . . . , 4;h = 1, . . . , 6 and mask ENijh with aijh. In the
TRACE protocol, these random values are involved only when computing Bij1

15

and Bij2 (Step 3). Correctness still holds since these values cancel each other
out when computing Bij1 − (Bij1 mod α2).

Therefore, one can modify the TRACE protocol by using a new random aijh
each time when computing ENijh. This is a countermeasure to prevent RCs
and RVs from obtaining the secret quadtree because, ENijh is masked by fresh
randomness each time and no information can be obtained about (xNij , yNij)
given the ENi values (similar to a one-time pad). This simple observation leads
to the following lemma.

Lemma 1. The above modification to TRACE provides information-theoretic
security against any passive adversary who wishes to obtain additional informa-
tion about the quadtree maintained by RS.

However, as we shall see in Section 3.2, this modification does not prevent
the RS in obtaining locations of RCs and RVs. We will also later see that a
similar countermeasure does not exist for the latter attack. Trying to use fresh
randomness there will violate the correctness of the protocol.

3.2 RS obtains locations of RCs, RVs

RS finds location of RVs. In Step 3, RS receives Ai = Aiπ(1)‖Aiπ(2)‖Aiπ(3)
‖Aiπ(4), i = 1, . . . ,m, from each RV, that contains masked information about
(xV , yV). RS knows ENij but does not know rij and the random permutation
π used on the four Aij values. Since there can only be 24 possible choices for π,
the RS can enumerate all of them to try and find π.

For each i, RS initializes an empty set Si. For each choice of permutation
ρ (among the set of all permutations on four elements), RS permutes the four
components of Ai according to ρ. That is, RS computes

A′i = Aiρ(π(1))‖Aiρ(π(2))‖Aiρ(π(3))‖Aiρ(π(4))
= A′i1‖A′i2‖A′i3‖A′i4. (18)

A′i corresponds to the original value Ai1‖Ai2‖Ai3‖Ai4 computed by RV only
when ρ = π−1. To see if the current choice ρ equals π−1, RS can do the following:
eliminate rij , α from A′ij1 and A′ij2 to get a linear equation in the unknowns
xV , yV :

A′ij1(xV · ENij2 + yV · ENij3 + ENij5)

= A′ij2(xV · ENij4 + yV · ENij1 + ENij6) mod p . (19)

In this way, RS can obtain four linear equations for j = 1, . . . , 4, in the two
unknowns xV , yV . Two of these equations can be used to solve and find xV , yV
(if a solution does not exist, move to the next choice of ρ). The remaining two
equations can be used to check if the values of xV , yV previously obtained are
consistent. If so, then with high probability RS can infer that ρ = π−1; add this
solution to set Si. If it is not consistent discard it and check the next permutation

16

Algorithm 2: RS recovers location of an RV

Input : (A1, . . . , Am) representing masked information about an RV’s
location

Output: RV’s location (xV , yV)
Procedure Recover Location(A1, . . . , Am) :

for i = 1, . . . ,m do
Si = φ
P = set of all permutations on 4 elements
for ρ ∈ P do

/∗ Permute the 4 components of Ai using ρ ∗/
Compute A′

i according to (18)
Obtain a linear system in the unknowns xV , yV by substituting
j = 1, 2 in (19)

if this system does not have a unique solution then
continue

end
/∗ Solve this system and check if the unique solution (x, y) also
satisfies the two equations obtained when substituting j = 3, 4 in
(19) ∗/

if (x, y) satisfies the consistency check then
Si = Si ∪ {(x, y)}

end
/∗ Note that ∀i, (xV , yV) ∈ Si ∗/

end
/∗ With high probability, we have | ∩m

i=1 Si| = 1 ∗/
{(xV , yV)} = ∩m

i=1Si

end
Output: (xV , yV)

choice for ρ. Note that Si always contains the original xV , yV chosen by RV since
this solution satisfies the consistency checks when ρ = π−1. In rare cases it could
be possible that a false positive also passes these consistency checks for a different
ρ and is added to Si.

The above procedure is discussed only for one value of i. There are m such
Ai’s received by RS (in general 30 ≤ m ≤ 100 [16, Section VI]), and the original
xV , yV is present in each Si. Moreover, it is highly unlikely that the same false
positive appears in every Si. Therefore, it is very likely that there is only one
common element present in all Si (this probability increases with m), and that
would be the required location of RV . Once again, there are no assumptions
made regarding geometry of the spatial region. We summarize the attack in
Algorithm 2.

Complexity. For each i = 1, . . . ,m, RS enumerates over all 24 possible
permutations. In each choice of permutation, RS solves a system of equations in
two variables (with all elements being in Zp) and checks for consistency with two
other equations to finally obtain the set Si. The size of each Si is at most 24. RS
later computes the intersection of all Si to determine the RV’s coordinates. All

17

these operations can be done in time O(k21m). Table 3 shows the average time
taken to recover (xV , yV) for varying tree size and security parameters.

RS finds location of RCs. In Step 5, RS receives C1‖C2‖C3‖C4 from RC.
Recall that RC chooses a square SRC of side 2R with its pick-up location at the
center. Each Cj corresponds to one vertex of that square, masked in a manner
similar to how RV masked its location as A (refer to Step 2). Since we just saw
an attack where RS can recover the original underlying location when given such
a masking, RS can obtain the 4 vertices corresponding to SRC . The center of
this square directly gives the pick-up location of RC.

RS can also find the take-off location of RC. In Step 8, RS receives C5 from
RC, which is a masking of RC’s take-off location using EN similar to what we
have seen in Step 2. Using the same attack as for RV, RS can directly recover
RCs location from C5. Note that, in practice, the pick-up and the take-off points
are quite close.

Remark. In Section 3.1 we saw that using fresh randomness for each en-
crypted quadtree term ENi did not violate correctness of the protocol. If we try
to apply the same argument here, then in Step 2 of the TRACE protocol, Aij1
and Aij2 have to be masked with different (and fresh) randomness, say rij1 and
rij2, respectively (currently, they are both masked by the same rij). But in Step
3 of the TRACE protocol, this would mean B′ij1 is masked with rij1, and B′ij2
is masked with rij2. Hence Bij = B′ij1 − B′ij2 would not have a common factor
rij , and one cannot infer whether the RV lies inside the quadrant Ni just by
checking the sign of Bij . Therefore, this approach will violate the correctness of
the TRACE protocol, and we believe that other countermeasures for this attack
are not straightforward to come up with.

4 Experimental Results

In this section, we discuss the experimental setup and other implementation
aspects of the attacks 3 mentioned in Section 3. Our experiments were imple-
mented using SageMath [13] and run on an Intel Core i5-8250U CPU @ 1.60
GHz with 8 GB RAM running Ubuntu 20.04 LTS.

4.1 Setup

The TRACE paper [16] states that setting (k1, k2, k3, k4) = (512, 160, 75, 75)
should be sufficient to ensure that Claims 1, 2, 3 hold. We also initialize these
security parameters with the same values. In addition, we demonstrate the ro-
bustness of our attack by performing another set of experiments with larger val-
ues (2048, 1000, 400, 400) satisfying Equation (2). Note that our attack is clearly
independent of the security of encryption schemes/digital signatures used in
TRACE.

3The implementation can be accessed at https://github.com/deepakkavoor/rhs-
attack/tree/trace-attack.

18

https://github.com/deepakkavoor/rhs-attack/tree/trace-attack
https://github.com/deepakkavoor/rhs-attack/tree/trace-attack

The implementation of TRACE protocol from [16] does not give any refer-
ence to the dataset that was used to create spatial divisions. So, we simulate
the creation of an arbitrary quadtree by first choosing an outermost rectangular
quadrant, followed by picking a random center and dividing it into four sub-
quadrants. We repeat this for the smaller quadrants until the number of nodes
in the tree is m. The TRACE implementation in [16] varies m between 28 and
84; we set m = 50 and m = 100 in our experiments. The attack indeed works
for any value of m (recall m ≥ 4) and its success probability increases with m.

Integer modular arithmetic is used in all computations. Since the sizes of lo-
cation coordinates are negligible compared to the security parameters k1, . . . , k4,
the vertices of the outermost quadrant are randomly chosen in the range [0, 220−
1] (for (k1, k2, k3, k4) = (512, 160, 75, 75)) and in [0, 250−1] (for (k1, k2, k3, k4) =
(2048, 1000, 400, 400)).

4.2 RCs, RVs recover Quadtree

RS computes the encrypted quadtree EN and sends it to an RV as described in
Section 2.3. Next, RV carries out the attack described in Section 3.1. We perform
20 iterations of this attack, and in each iteration, the RS generates a fresh
random quadtree (as described in Section 4.1) and computes EN accordingly.
We observed that in all iterations, RV was able to recover the exact values of all
quadrant vertices every time. We repeat the same for different choices of m and
security parameters, and tabulate the average time taken to recover the quadtree
in Table 2. Since the same attack allows an RC to recover the quadtree, similar
experimental statistics can be expected in this case.

Security parameters Size of quadtree m

(k1, k2, k3, k4) 50 100

(512, 160, 75, 75) 55.686 108.566

(2048, 1000, 400, 400) 2341.836 4771.549

Table 2. Time taken (in seconds) for an RV to recover quadtree, averaged over 30
iterations.

4.3 RS recovers locations of RCs and RVs

The location (xV , yV) of an RV is randomly chosen within the outermost quad-
rant. We simulate the exchange of messages between RS and this particular RV,
following the steps of TRACE protocol (Section 2.3). Next, RS carries out the
attack described in Section 3.2. We perform 30 iterations of the attack with
freshly generated (random) values for quadtree and (xV , yV) in each iteration.

19

Security parameters Size of quadtree m

(k1, k2, k3, k4) 50 100

(512, 160, 75, 75) 0.206 0.402

(2048, 1000, 400, 400) 7.461 14.778

Table 3. Time taken (in seconds) for RS to recover an RV’s location, averaged over
30 iterations.

We observed that in all iterations, RS was able to recover the exact location of
the RV. That is, | ∩mi=1 Si| was exactly 1, and the recovered coordinate was same
as the RV’s location in all iterations (refer Algorithm 2). We repeat the same for
different choices of m and security parameters, and tabulate the average time
taken to recover RV’s location in Table 3.

The attack to recover an RC’s location is exactly the same as that for an
RV. Since we assume the distribution of RC’s location to be random as well, the
same statistics also hold true when RS recovers the location of an RC.

5 Related Work

We briefly mention the prior works in privacy-preserving ride-hailing services.
Since these works use fundamentally different ideas (such as homomorphic en-
cryption, garbled circuits) compared to TRACE (which relies on random mask-
ing), our attack does not directly apply to these works.

PrivateRide by Pham et al. [11] is the first work that provides a practical
solution towards privacy in ride-hailing systems. The locations and identities
of riders are hidden using cloaked regions and anonymous credentials. They
use efficient cryptographic primitives to ensure privacy of sensitive information.
ORide by Pham et al. [10] offers accountability guarantees and secure payments
along with privacy of riders and drivers. They use homomorphic encryption
to compute the Euclidean distance and identify the closest driver in a zone.
[5] proposes a modification to ORide to ensure location privacy of responding
drivers in the region with respect to a rider.

Zhao et al. [20] conduct a study on leakage of sensitive data in ride-hailing
services. They analyze APIs in non-privacy preserving apps provided to drivers
by Uber and Lyft.

pRide by Luo et al. [7] proposes a privacy-preserving solution involving two
non-colluding servers, one of them being the RS and the other a third-party
Crypto Provider (CP). They use road network embedding in a higher dimen-
sion to approximate shortest distance over road networks. The homomorphically
computed (approximate) distances are compared using a garbled circuit. Their
scheme provides higher ride-matching accuracy than ORide while being compu-
tationally efficient. lpRide by Yu et al. [19] improves upon pRide by eliminating
the need for a second Crypto Provider. They use a modified version of Paillier

20

cryptosystem for encrypting locations of riders and drivers. However, [15] pro-
posed an attack on the modified Paillier scheme used in lpRide, allowing the
service provider to recover locations of all riders and drivers in the region.

EPRide by Yu et al. [18] uses an efficient approach to compute the ex-
act shortest road distance using road network hypercube embedding. They use
somewhat homomorphic encryption over packet ciphertexts to achieve high ride-
matching accuracy and efficiency, reporting significant improvements over ORide
and pRide. Xie et. al. [17] improve upon pRide by combining the idea of road
network embedding with cryptographic constructs such as Property-preserving
Hash. They eliminate the need for a trusted third-party server to compute short-
est distances.

Lu et al. [6] proposed a protocol for Privacy-Preserving Scalar Product (PP-
SP) in 2013, which allows two parties P0 and P1 (having input vectors −→a and
−→
b , respectively) to jointly compute the scalar product −→a ·

−→
b such that no in-

formation about Pi’s input is revealed to P1−i (other than what is revealed
by the output itself), for i ∈ {0, 1}. Their protocol was claimed to achieve
information-theoretic security using random masking, and does not make use
of any computational assumptions. However, in 2019, [12] proposed an attack
on the PP-SP protocol of Lu et al. and showed that it is impossible to construct a
PP-SP protocol without the use of computational hardness assumptions. These
attacks are based on constructing distinguishers that leak additional information
about the other party’s secrets than what the output should reveal. While the
TRACE protocol is motivated by the designs of the PP-SP protocols of Lu et
al., we would like to stress that the application context, i.e., privacy-preserving
ride-hailing services, is different in our setting, and hence the privacy require-
ments differ too. The main goal of our attacks on the TRACE protocol is the
complete recovery of secret locations rather than just distinguishing them from
uniform random values, and hence the attack techniques are also different. Note
that the anonymity of users’ locations is the main requirement for a PP-RHS,
and not just indistinguishability from uniform random values. Hence, the attack
in [12] does not necessarily imply our results, though it certainly provides the
motivation for a deeper investigation such as our work.

Also, the impossibility result of [12] does not necessarily imply that a PP-
RHS cannot be constructed without computational hardness assumptions. For
instance, in Section 3.1, we showed that our modification to the TRACE proto-
col, where fresh random values are used for each invocation, prevents RCs and
RVs from obtaining the secret quadtree (this is based on an information-theoretic
argument similar to that of a one-time pad). Hence, impossibility results for the
PP-SP setting do not necessarily translate to the PP-RHS setting.

6 Conclusion and Future Work

In this work we proposed an attack on the privacy-preserving ride-hailing service
TRACE. We disproved several privacy claims about TRACE in an honest-but-
curious setting. We showed how riders (RCs) and drivers (RVs) can recover the

21

secret spatial division information maintained by the ride-hailing server (RS).
We also showed how the RS can recover the exact locations of RCs and RVs.
We implemented our attack and evaluated the success probability for different
security parameters. In the future, it would be interesting to propose a modified
protocol for TRACE in which all the aforementioned privacy claims hold.

Acknowledgements. This work was partially funded by the Infosys Foundation
Career Development Chair Professorship grant for Srinivas Vivek.

References

1. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) Advances in Cryptology — ASIACRYPT 2001. pp. 514–532. Springer
Berlin Heidelberg, Berlin, Heidelberg (2001)

2. Eberly, W., Giesbrecht, M., Giorgi, P., Storjohann, A., Villard, G.: Solving sparse
integer linear systems. CoRR abs/cs/0603082 (2006), http://arxiv.org/abs/cs/
0603082

3. EconomicTimes: Bengaluru techie arrested for data theft from Aadhaar web-
site. https ://economictimes.indiatimes.com/small - biz/security- tech/security/
ola - employee - arrested - for - data - theft - from - aadhaar - website / articleshow /
59909079.cms?from=mdr (2017), retrieved: June 17, 2021

4. Hurriyet Daily News: Istanbul taxi drivers hunt down, beat up Uber drivers as ten-
sions rise. https://www.hurriyetdailynews.com/istanbul-taxi-drivers-hunt-down-
beat-up-uber-drivers-as-tensions-rise-128443 (2018), retrieved: June 17, 2021

5. Kumaraswamy, D., Murthy, S., Vivek, S.: Revisiting driver anonymity in oride.
CoRR abs/2101.06419 (2021), https://arxiv.org/abs/2101.06419, to appear in
SAC 2021.

6. Lu, R., Lin, X., Shen, X.: Spoc: A secure and privacy-preserving op-
portunistic computing framework for mobile-healthcare emergency. IEEE
Transactions on Parallel and Distributed Systems 24(3), 614–624 (2013).
https://doi.org/10.1109/TPDS.2012.146

7. Luo, Y., Jia, X., Fu, S., Xu, M.: pRide: Privacy-Preserving Ride
Matching Over Road Networks for Online Ride-Hailing Service. IEEE
Trans. Information Forensics and Security 14(7), 1791–1802 (2019).
https://doi.org/10.1109/TIFS.2018.2885282, https : / / doi.org / 10.1109 /
TIFS.2018.2885282

8. NortonLifeLock: Uber Announces New Data Breach Affecting 57 million Rid-
ers and Drivers. https://us.norton.com/internetsecurity-emerging-threats-uber-
breach-57-million.html (2020), retrieved: June 17, 2021

9. Pew Research Center: More Americans Are Using Ride-Hailing Apps. https:
//www.pewresearch.org/fact-tank/2019/01/04/more-americans-are-using-ride-
hailing-apps/ (2019), retrieved: June 17, 2021

10. Pham, A., Dacosta, I., Endignoux, G., Troncoso-Pastoriza, J.R., Huguenin,
K., Hubaux, J.: ORide: A Privacy-Preserving yet Accountable Ride-Hailing
Service. In: Kirda, E., Ristenpart, T. (eds.) 26th USENIX Security Sympo-
sium, USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017.
pp. 1235–1252. USENIX Association (2017), https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/pham

22

http://arxiv.org/abs/cs/0603082
http://arxiv.org/abs/cs/0603082
https://economictimes.indiatimes.com/small-biz/security-tech/security/ola-employee-arrested-for-data-theft-from-aadhaar-website/articleshow/59909079.cms?from=mdr
https://economictimes.indiatimes.com/small-biz/security-tech/security/ola-employee-arrested-for-data-theft-from-aadhaar-website/articleshow/59909079.cms?from=mdr
https://economictimes.indiatimes.com/small-biz/security-tech/security/ola-employee-arrested-for-data-theft-from-aadhaar-website/articleshow/59909079.cms?from=mdr
https://www.hurriyetdailynews.com/istanbul-taxi-drivers-hunt-down-beat-up-uber-drivers-as-tensions-rise-128443
https://www.hurriyetdailynews.com/istanbul-taxi-drivers-hunt-down-beat-up-uber-drivers-as-tensions-rise-128443
https://arxiv.org/abs/2101.06419
https://doi.org/10.1109/TPDS.2012.146
https://doi.org/10.1109/TIFS.2018.2885282
https://doi.org/10.1109/TIFS.2018.2885282
https://doi.org/10.1109/TIFS.2018.2885282
https://us.norton.com/internetsecurity-emerging-threats-uber-breach-57-million.html
https://us.norton.com/internetsecurity-emerging-threats-uber-breach-57-million.html
https://www.pewresearch.org/fact-tank/2019/01/04/more-americans-are-using-ride-hailing-apps/
https://www.pewresearch.org/fact-tank/2019/01/04/more-americans-are-using-ride-hailing-apps/
https://www.pewresearch.org/fact-tank/2019/01/04/more-americans-are-using-ride-hailing-apps/
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/pham
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/pham

11. Pham, A., Dacosta, I., Jacot-Guillarmod, B., Huguenin, K., Hajar, T., Tramèr, F.,
Gligor, V.D., Hubaux, J.: PrivateRide: A Privacy-Enhanced Ride-Hailing Service.
PoPETs 2017(2), 38–56 (2017). https://doi.org/10.1515/popets-2017-0015, https:
//doi.org/10.1515/popets-2017-0015

12. Schneider, T., Treiber, A.: A comment on privacy-preserving scalar product proto-
cols as proposed in “spoc”. IEEE Transactions on Parallel and Distributed Systems
31(3), 543–546 (2020). https://doi.org/10.1109/TPDS.2019.2939313

13. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
9.0) (2021), https://www.sagemath.org

14. thejournal.ie: West Dublin gang using hailing apps to target older taxi drivers.
https://www.thejournal.ie/west-dublin-taxi-robbery-4420178-Jan2019/ (2019),
retrieved: June 17, 2021

15. Vivek, S.: Attacks on a privacy-preserving publish-subscribe system and a ride-
hailing service. CoRR abs/2105.04351 (2021), https://arxiv.org/abs/2105.04351,
to appear in IMACC 2021.

16. Wang, F., Zhu, H., Liu, X., Lu, R., Li, F., Li, H., Zhang, S.: Efficient and privacy-
preserving dynamic spatial query scheme for ride-hailing services. IEEE Transac-
tions on Vehicular Technology 67(11), 11084–11097 (2018)

17. Xie, H., Guo, Y., Jia, X.: A privacy-preserving online ride-hailing system without
involving a third trusted server. IEEE Transactions on Information Forensics and
Security 16, 3068–3081 (2021). https://doi.org/10.1109/TIFS.2021.3065832

18. Yu, H., Jia, X., Zhang, H., Shu, J.: Efficient and privacy-preserving ride matching
using exact road distance in online ride hailing services. IEEE Transactions on
Services Computing pp. 1–1 (2020). https://doi.org/10.1109/TSC.2020.3022875

19. Yu, H., Shu, J., Jia, X., Zhang, H., Yu, X.: lpride: Lightweight and
privacy-preserving ride matching over road networks in online ride hail-
ing systems. IEEE Trans. Vehicular Technology 68(11), 10418–10428
(2019). https://doi.org/10.1109/TVT.2019.2941761, https : / / doi.org / 10.1109 /
TVT.2019.2941761

20. Zhao, Q., Zuo, C., Pellegrino, G., Lin, Z.: Geo-locating Drivers: A Study of Sensitive
Data Leakage in Ride-Hailing Services. In: 26th Annual Network and Distributed
System Security Symposium, NDSS 2019, San Diego, California, USA, February
24-27, 2019. The Internet Society (2019), https://www.ndss-symposium.org/ndss-
paper/geo- locating- drivers- a- study- of- sensitive- data- leakage- in- ride- hailing-
services/

23

https://doi.org/10.1515/popets-2017-0015
https://doi.org/10.1515/popets-2017-0015
https://doi.org/10.1515/popets-2017-0015
https://doi.org/10.1109/TPDS.2019.2939313
https://www.thejournal.ie/west-dublin-taxi-robbery-4420178-Jan2019/
https://arxiv.org/abs/2105.04351
https://doi.org/10.1109/TIFS.2021.3065832
https://doi.org/10.1109/TSC.2020.3022875
https://doi.org/10.1109/TVT.2019.2941761
https://doi.org/10.1109/TVT.2019.2941761
https://doi.org/10.1109/TVT.2019.2941761
https://www.ndss-symposium.org/ndss-paper/geo-locating-drivers-a-study-of-sensitive-data-leakage-in-ride-hailing-services/
https://www.ndss-symposium.org/ndss-paper/geo-locating-drivers-a-study-of-sensitive-data-leakage-in-ride-hailing-services/
https://www.ndss-symposium.org/ndss-paper/geo-locating-drivers-a-study-of-sensitive-data-leakage-in-ride-hailing-services/

	Cryptanalysis of the Privacy-Preserving Ride-Hailing Service TRACE

