Skip to main content

On the Higher-Bit Version of Approximate Inhomogeneous Short Integer Solution Problem

  • Conference paper
  • First Online:
Cryptology and Network Security (CANS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13099))

Included in the following conference series:

Abstract

We explore a bitwise modification in Ajtai’s one-way function. Our main contribution is to define the higher-bit approximate inhomogeneous short integer solution (ISIS) problem and prove its reduction to the ISIS problem. In this new instance, our main idea is to discard low-weighted bits to gain compactness.

As an application, we construct a bitwise version of a hash-and-sign signature in the random oracle model whose security relies on the (Ring)-LWE and (Ring)-ISIS assumptions. Our scheme is built from the hash-and-sign digital signature scheme based on the relaxed notion of approximate trapdoors introduced by Chen, Genise and Mukherjee (2019). Their work can be interpreted as a bitwise optimization of the work of Micciancio and Peikert (2012). We extend this idea and apply our technique to the scheme by discarding low-weighted bits in the public key. Our modification brings improvement in the public key size but also in the signature size when used in the right setting.

However, constructions based on the higher-bit approximate ISIS save memory space at the expense of loosening security. Parameters must be set in regards with this trade-off.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28

    Chapter  MATH  Google Scholar 

  2. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: STOC 1996. ACM, New York (1996). https://doi.org/10.1145/237814.237838

  3. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6_1

    Chapter  Google Scholar 

  4. Alkim, E., Barreto, P.S.L.M., Bindel, N., Krämer, J., Longa, P., Ricardini, J.E.: The lattice-based digital signature scheme qTESLA. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds.) ACNS 2020. LNCS, vol. 12146, pp. 441–460. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57808-4_22

    Chapter  Google Scholar 

  5. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theor. Comp. Sys. 48(3), 535–553 (2010). https://doi.org/10.1007/s00224-010-9278-3

    Article  MathSciNet  MATH  Google Scholar 

  6. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: STOC 2013. ACM, New York (2013). https://doi.org/10.1145/2488608.2488680

  7. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. J. Cryptol. 25(4), 601–639 (2011). https://doi.org/10.1007/s00145-011-9105-2

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Y.: Private communication (2021)

    Google Scholar 

  9. Chen, Y., Genise, N., Mukherjee, P.: Approximate trapdoors for lattices and smaller hash-and-sign signatures. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 3–32. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_1

    Chapter  Google Scholar 

  10. Ducas, L., et al.: CRYSTALS-Dilithium: a lattice-based digital signature scheme. IACR Trans. Cryptographic Hardware Embedded Syst. (1), 238–268 (2018). https://doi.org/10.13154/tches.v2018.i1.238-268

  11. Fouque, P.-A., e.a.: Falcon: fast-Fourier lattice-based compact signatures over NTRU (2018). https://falcon-sign.info/

  12. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009. ACM (2009). https://doi.org/10.1145/1536414.1536440

  13. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC 2008. ACM (2008). https://doi.org/10.1145/1374376.1374407

  14. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868

    Chapter  Google Scholar 

  15. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_21

    Chapter  Google Scholar 

  16. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43

    Chapter  Google Scholar 

  17. Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital signatures. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 37–54. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_3

    Chapter  Google Scholar 

  18. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  19. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. In: 45th IEEE Symposium on FOCS, pp. 372–381 (2004). https://doi.org/10.1109/FOCS.2004.72

  20. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way functions from worst-case complexity assumptions. In: FOCS 2002. IEEE (2002). https://doi.org/10.1109/SFCS.2002.1181960

  21. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  22. Moody, D., et al.: Status report on the second round of the NIST post-quantum cryptography standardization process (2020). https://doi.org/10.6028/NIST.IR.8309

  23. Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_5

    Chapter  Google Scholar 

  24. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6) (2009). https://doi.org/10.1145/1568318.1568324

  25. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: SFCS 1994. IEEE Computer Society (1994). https://doi.org/10.1109/SFCS.1994.365700

Download references

Acknowledgments

We would like to thank Yilei Chen, Nicholas Genise and Pratyay Mukherjee for kindly sharing with us their implementation of Hash-and-Sign signature based on F-trapdoors. We are especially grateful to Yilei Chen for his invaluable advice to our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anaëlle Le Dévéhat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le Dévéhat, A., Shizuya, H., Hasegawa, S. (2021). On the Higher-Bit Version of Approximate Inhomogeneous Short Integer Solution Problem. In: Conti, M., Stevens, M., Krenn, S. (eds) Cryptology and Network Security. CANS 2021. Lecture Notes in Computer Science(), vol 13099. Springer, Cham. https://doi.org/10.1007/978-3-030-92548-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92548-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92547-5

  • Online ISBN: 978-3-030-92548-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics