Skip to main content

Reversible Elementary Triangular Partitioned Cellular Automata and Their Complex Behavior

  • Chapter
  • First Online:
Automata and Complexity

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 42))

  • 416 Accesses

Abstract

We investigate a special type of cellular automata called elementary triangular partitioned cellular automata (ETPCAs) in which various interesting phenomena emerge. They are quite simple, since each of their local functions is specified by only four local transition rules. There are 256 ETPCAs in total, and 36 among them are reversible. Despite their extreme simplicity, some reversible ETPCAs show quite complex behavior, and they even have universal computing capability. In this survey, based on the author’s past results, we discuss how complex phenomena appear in these ETPCAs, and how high-order functions, such as reversible logic gates, are realized combining useful phenomena.

Currently, Professor Emeritus of Hiroshima University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamatzky A (ed) (2002) Collision-based computing. Springer. https://doi.org/10.1007/978-1-4471-0129-1

  2. Bays C (1994) Cellular automata in the triangular tessellation. Complex Syst 8:127–150

    MathSciNet  MATH  Google Scholar 

  3. Bennett CH (1973) Logical reversibility of computation. IBM J Res Dev 17:525–532. https://doi.org/10.1147/rd.176.0525

    Article  MathSciNet  MATH  Google Scholar 

  4. Fredkin E, Toffoli T (1982) Conservative logic. Int J Theor Phys 21:219–253. https://doi.org/10.1007/BF01857727

    Article  MathSciNet  MATH  Google Scholar 

  5. Gajardo A, Goles E (2001) Universal cellular automaton over a hexagonal tiling with 3 states. Int J Algebra Comput 11:335–354. https://doi.org/10.1142/S0218196701000486

    Article  MathSciNet  MATH  Google Scholar 

  6. Gardner M (1970) Mathematical games: the fantastic combinations of John Conway’s new solitaire game “life’’. Sci Am 223(4):120–123. https://doi.org/10.1038/scientificamerican1070-120

    Article  Google Scholar 

  7. Gardner M (1971) Mathematical games: on cellular automata, self-reproduction, the Garden of Eden and the game “life’’. Sci Am 224(2):112–117. https://doi.org/10.1038/scientificamerican0271-112

    Article  Google Scholar 

  8. Imai K, Morita K (2000) A computation-universal two-dimensional 8-state triangular reversible cellular automaton. Theor Comput Sci 231:181–191. https://doi.org/10.1016/S0304-3975(99)00099-7

    Article  MathSciNet  MATH  Google Scholar 

  9. Morita K (2016) Universality of 8-state reversible and conservative triangular partitioned cellular automata. In: ACRI 2016 El Yacoubi S, et al (eds) LNCS, vol 9863, pp 45–54. https://doi.org/10.1007/978-3-319-44365-2_5. Slides with movies of computer simulation: Hiroshima University Institutional Repository, http://ir.lib.hiroshima-u.ac.jp/00039997

  10. Morita K (2017) Finding a pathway from reversible microscopic laws to reversible computers. Int J Unconv Comput 13:203–213

    Google Scholar 

  11. Morita K (2017) Reversible world : Data set for simulating a reversible elementary triangular partitioned cellular automaton on Golly. Hiroshima University Institutional Repository. http://ir.lib.hiroshima-u.ac.jp/00042655

  12. Morita K (2017) Theory of reversible computing. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56606-9

  13. Morita K (2019) A universal non-conservative reversible elementary triangular partitioned cellular automaton that shows complex behavior. Nat Comput 18(3):413–428. https://doi.org/10.1007/s11047-017-9655-9. Slides with movies of computer simulation: Hiroshima University Institutional Repository, http://ir.lib.hiroshima-u.ac.jp/00039321

  14. Morita K, Harao M (1989) Computation universality of one-dimensional reversible (injective) cellular automata. Trans IEICE Jpn E72:758–762

    Google Scholar 

  15. Trevorrow A, Rokicki T et al (2005) Golly: an open source, cross-platform application for exploring Conway’s Game of Life and other cellular automata. http://golly.sourceforge.net/

  16. Wolfram S (1986) Theory and applications of cellular automata. World Scientific Publishing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Morita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morita, K. (2022). Reversible Elementary Triangular Partitioned Cellular Automata and Their Complex Behavior. In: Adamatzky, A. (eds) Automata and Complexity. Emergence, Complexity and Computation, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-030-92551-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92551-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92550-5

  • Online ISBN: 978-3-030-92551-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics