Skip to main content

On Fungal Automata

  • Chapter
  • First Online:

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 42))

Abstract

Fungi are iniquitous creatures capable for adaptation in hush environments. Recently there is a growing that intelligence of the fungi comparable with that of slime mould and plans and that fungi sense and process information in a highly efficient way. As a first ever attempt to formalise informaiton processing in fungi we developed two cellular automaton models. 1D fungal automata and 2D fungal automata. Both model involve cellular automaton (CA) models of information dynamics on a single hypha of a fungal mycelium. Such a filament is divided in compartments (here also called cells) by septa. These septa are invaginations of the cell wall and their pores allow for flow of cytoplasm between compartments and hyphae. The septal pores of the fungal phylum of the Ascomycota can be closed by organelles called Woronin bodies. Septal closure is increased when the septa become older and when exposed to stress conditions. Thus, Woronin bodies act as informational flow valves. The 1D fungal automata is a binary state ternary neighbourhood CA, where every compartment follows one of the elementary cellular automata (ECA) rules if its pores are open and either remains in state ‘0’ (first species of fungal automata) or its previous state (second species of fungal automata) if its pores are closed. The Woronin bodies closing the pores are also governed by ECA rules. We analyse a structure of the composition space of cell-state transition and pore-state transitions rules, complexity of fungal automata with just few Woronin bodies, and exemplify several important local events in the automaton dynamics. The 2D fungal automata is 2D CA where communication between neighbouring cells can be blocked on demand. We demonstrate computational universality of the fungal automata by implementing sandpile cellular automata circuits there. We reduce the Monotone Circuit Value Problem to the Fungal Automaton Prediction Problem. We construct families of wires, cross-overs and gates to prove that the fungal automata are P-complete.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://figshare.com/s/b7750ee3fe6df7cbe228.

References

  1. Andrew A (2018) On spiking behaviour of oyster fungi Pleurotus djamor. Sci Rep 7873

    Google Scholar 

  2. Adamatzky A (2018) Towards fungal computer. Interface focus 8(6):20180029

    Article  Google Scholar 

  3. Andrew Adamatzky, Martin Tegelaar, Han AB Wosten, Anna L Powell, Alexander E Beasley, and Richard Mayne. On boolean gates in fungal colony. arXiv preprint arXiv:2002.09680, 2020

  4. Alexander E Beasley, Anna L Powell, and Andrew Adamatzky. Memristive properties of mushrooms. arXiv preprint arXiv:2002.06413, 2020

  5. Beck J, Ebel F (2013) Characterization of the major Woronin body protein hexa of the human pathogenic mold aspergillus fumigatus. Int J Med Microbiol 303(2):90–97

    Article  Google Scholar 

  6. Michael W Berns, James R Aist, William H Wright, and Hong Liang. Optical trapping in animal and fungal cells using a tunable, near-infrared titanium-sapphire laser. Experimental cell research, 198(2):375–378, 1992

    Google Scholar 

  7. Bitar J, Goles E (1992) Parallel chip firing games on graphs. Theoret Comput Sci 92(2):291–300

    Article  MathSciNet  Google Scholar 

  8. Robert-Jan Bleichrodt, Marc Hulsman, Han AB Wösten, and Marcel JT Reinders. Switching from a unicellular to multicellular organization in an aspergillus niger hypha. MBio, 6(2):e00111–15, 2015

    Google Scholar 

  9. Robert-Jan Bleichrodt, G Jerre van Veluw, Brand Recter, Jun-ichi Maruyama, Katsuhiko Kitamoto, and Han AB Wösten. Hyphal heterogeneity in aspergillus oryzae is the result of dynamic closure of septa by Woronin bodies. Molecular microbiology, 86(6):1334–1344, 2012

    Google Scholar 

  10. Robert-Jan Bleichrodt, Arman Vinck, Nick D Read, and Han AB Wösten. Selective transport between heterogeneous hyphal compartments via the plasma membrane lining septal walls of aspergillus niger. Fungal Genetics and Biology, 82:193–200, 2015

    Google Scholar 

  11. Bonfante P, Anca I-A (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Ann Rev Microbiol 63:363–383

    Article  Google Scholar 

  12. Carlile MJ, Watkinson SC, Gooday GW (2001) The fungi. Gulf Professional Publishing

    Google Scholar 

  13. Chessa A, Eugene Stanley H, Vespignani A, Zapperi S (1999) Universality in sandpiles. Phys Rev E 59(1):R12

    Google Scholar 

  14. Christensen K, Fogedby HC, Jensen HJ (1991) Dynamical and spatial aspects of sandpile cellular automata. J Stat Phys 63(3-4):653–684

    Google Scholar 

  15. Christensen M (1989) A view of fungal ecology. Mycologia 81(1):1–19

    Article  Google Scholar 

  16. Collinge AJ, Markham P (1985) Woronin bodies rapidly plug septal pores of severedpenicillium chrysogenum hyphae. Exp Mycol 9(1):80–85

    Google Scholar 

  17. Cook M (2004) Universality in elementary cellular automata. Complex Syst 15(1):1–40

    MathSciNet  MATH  Google Scholar 

  18. Cooke RC, Rayner ADM et al (1984) Ecology of saprotrophic fungi. Longma

    Google Scholar 

  19. Dai Y-C, Cui B-K (2011) Fomitiporia ellipsoidea has the largest fruiting body among the fungi. Fungal Biol 115(9):813–814

    Article  Google Scholar 

  20. Deutsch P, Gailly J-L (1996) Zlib compressed data format specification version 3.3. Technical report

    Google Scholar 

  21. Dhar D (1990) Self-organized critical state of sandpile automaton models. Phys Rev Lett 64(14):1613

    Article  MathSciNet  Google Scholar 

  22. Durand-Lose J (2001) Representing reversible cellular automata with reversible block cellular automata. Discret Math Theor Comput Sci 145:154

    MATH  Google Scholar 

  23. Durand-Lose JO (2000) Reversible space–time simulation of cellular automata. Theor Comput Sci 246(1-2):117–129

    Google Scholar 

  24. Gajardo A, Goles E (2006) Crossing information in two-dimensional sandpiles. Theor Comput Sci 369(1-3):463–469

    Google Scholar 

  25. Goles E (1961) Sand piles, combinatorial games and cellular automata. In: Instabilities and nonequilibrium structures III. Springer, pp 101–121

    Google Scholar 

  26. Goles E (1992) Sand pile automata. In Annales de l’IHP Physique théorique 56:75–90

    MathSciNet  MATH  Google Scholar 

  27. Goles E, Margenstern M (1996) Sand pile as a universal computer. Int J Mod Phys C 7(02):113–122

    Article  MathSciNet  Google Scholar 

  28. Goles E, Margenstern M (1997) Universality of the chip-firing game. Theor Comput Sci 172(1–2):121–134

    Article  MathSciNet  Google Scholar 

  29. Greenlaw R, James Hoover H, Ruzzo WL et al (1995) Limits to parallel computation: P-completeness theory. Oxford University Press on Demand

    Google Scholar 

  30. Griffin DM et al (1972) Ecology of soil fungi. Ecology of soil fungi.

    Google Scholar 

  31. Held M, Edwards C, Nicolau DV (2008) Examining the behaviour of fungal cells in microconfined mazelike structures. In: Imaging, manipulation, and analysis of biomolecules, cells, and tissues VI, vol 6859. International Society for Optics and Photonics, p 68590U

    Google Scholar 

  32. Held M, Edwards C, Nicolau DV (2009) Fungal intelligence; or on the behaviour of microorganisms in confined micro-environments. In: Journal of physics: conference series, vol 178. IOP Publishing, p 012005

    Google Scholar 

  33. Howard PG (1993) The design and analysis of efficient lossless data compression systems. PhD thesis, Citeseer

    Google Scholar 

  34. Imai K, Morita K (2000) A computation-universal two-dimensional 8-state triangular reversible cellular automaton. Theor Comput Sci 231(2):181–191

    Article  MathSciNet  Google Scholar 

  35. Jedd G (2011) Fungal evo-devo: organelles and multicellular complexity. Trends Cell Biol 21(1):12–19

    Article  Google Scholar 

  36. Jedd G, Chua N-H (2000) A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nat Cell Biol 2(4):226–231

    Article  Google Scholar 

  37. Leonhardt Y, Kakoschke SC, Wagener J, Ebel F (2017) Lah is a transmembrane protein and requires spa10 for stable positioning of Woronin bodies at the septal pore of aspergillus fumigatus. Sci Rep 7:44179

    Google Scholar 

  38. Lew RR (2005) Mass flow and pressure-driven hyphal extension in neurospora crassa. Microbiology 151(8):2685–2692

    Google Scholar 

  39. Lindgren K, Nordahl MG (1990) Universal computation in simple one-dimensional cellular automata. Complex Syst 4(3):299–318

    MathSciNet  MATH  Google Scholar 

  40. Margolus N (1984) Physics-like models of computation. Phys D 10(1):81–95

    Article  MathSciNet  Google Scholar 

  41. Margolus N (2002) Universal cellular automata based on the collisions of soft spheres. In: Adamatzky A (ed) Collision-based computing. Springer, pp 107–134

    Google Scholar 

  42. Martin B (2013) On goles’ universal machines: a computational point of view. Theor Comput Sci 504:83–88

    Article  MathSciNet  Google Scholar 

  43. Martínez GJ, McIntosh HV, Seck-Tuoh Mora JC (2003) Production of gliders by collisions in rule 110. In: European conference on artificial life. Springer, pp 175–182

    Google Scholar 

  44. Martínez GJ, McIntosh HV, Seck-Tuoh Mora JC (2006) Gliders in rule 110. Int J Unconv Comput 2(1):1

    Google Scholar 

  45. Martínez GJ, Seck-Tuoh Mora JC, Vergara SVC (2007) Rule 110 objects and other collision-based constructions. J Cellular Autom 2:219–242

    Google Scholar 

  46. Maruyama J-i, Juvvadi PR, Ishi K, Kitamoto K (2005) Three-dimensional image analysis of plugging at the septal pore by woronin body during hypotonic shock inducing hyphal tip bursting in the filamentous fungus aspergillus oryzae. Biochem Biophys Res Commun 331(4):1081–1088

    Google Scholar 

  47. Momany M, Richardson EA, Van Sickle C, Jedd G (2002) Mapping Woronin body position in aspergillus nidulans. Mycologia 94(2):260–266

    Google Scholar 

  48. Moore C, Nilsson M (1999) The computational complexity of sandpiles. J Stat Phys 96(1–2):205–224

    Article  MathSciNet  Google Scholar 

  49. Moore RT, McAlear JH (1962) Fine structure of mycota. 7. observations on septa of ascomycetes and basidiomycetes. Am J Botany 49(1):86–94

    Google Scholar 

  50. Morita K, Harao M (1989) Computation universality of one-dimensional reversible (injective) cellular automata. IEICE Trans (1976-1990) 72(6):758–762

    Google Scholar 

  51. Neary T, Woods D (2006) P-completeness of cellular automaton rule 110. In: International colloquium on automata, languages, and programming. Springer, pp 132–143

    Google Scholar 

  52. Ng SK, Liu F, Lai J, Low W, Jedd G (2009) A tether for Woronin body inheritance is associated with evolutionary variation in organelle positioning. PLoS Genetics 5(6)

    Google Scholar 

  53. Olsson S, Hansson BS (1995) Action potential-like activity found in fungal mycelia is sensitive to stimulation. Naturwissenschaften 82(1):30–31

    Article  Google Scholar 

  54. Rayner ADM, Boddy L et al (1988) Fungal decomposition of wood. Its biology and ecology. Wiley

    Google Scholar 

  55. Reichle RE, Alexander JV (1965) Multiperforate septations, Woronin bodies, and septal plugs in fusarium. J Cell Biol 24(3):489

    Article  Google Scholar 

  56. Roelofs G, Koman R (1999) PNG: the definitive guide. O’Reilly & Associates, Inc.

    Google Scholar 

  57. Slayman CL, Scott Long W, Gradmann D (1976) “Action potentials” in Neurospora crassa, a mycelial fungus. Biochimica et Biophysica Acta (BBA)-Biomembranes 426(4):732–744

    Google Scholar 

  58. Smith ML, Bruhn JN, Anderson JB (1992) The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356(6368):428

    Google Scholar 

  59. Soundararajan S, Jedd G, Li X, Ramos-Pamploña M, Chua NH, Naqvi NI (2004) Woronin body function in magnaporthe grisea is essential for efficient pathogenesis and for survival during nitrogen starvation stress. The Plant Cell 16(6):1564–1574

    Google Scholar 

  60. Steinberg G, Harmer NJ, Schuster M, Kilaru S (2017) Woronin body-based sealing of septal pores. Fungal Genet Biol 109:53–55

    Google Scholar 

  61. Tegelaar M, Bleichrodt R-J, Nitsche B, Ram AFJ, Wösten HAB (2020) Subpopulations of hyphae secrete proteins or resist heat stress in aspergillus oryzae colonies. Environ Microbiol 22(1):447–455

    Google Scholar 

  62. Tegelaar M, Wösten HAB (2017) Functional distinction of hyphal compartments. Sci Rep 7(1):1–6

    Article  Google Scholar 

  63. Tenney K, Hunt I, Sweigard J, Pounder JI, McClain C, Bowman EJ, Bowman BJ (2000) Hex-1, a gene unique to filamentous fungi, encodes the major protein of the woronin body and functions as a plug for septal pores. Fungal Genet Biol 31(3):205–217

    Google Scholar 

  64. Tey WK, North AJ, Reyes JL, Lu YF, Jedd G (2005) Polarized gene expression determines Woronin body formation at the leading edge of the fungal colony. Mol Biol cell 16(6):2651–2659

    Google Scholar 

  65. Trinci APJ, Collinge AJ (1974) Occlusion of the septal pores of damaged hyphae ofneurospora crassa by hexagonal crystals. Protoplasma 80(1-3):57–67

    Google Scholar 

  66. Wergin WP (1973) Development of Woronin bodies from microbodies infusarium oxysporum f. sp. lycopersici. Protoplasma 76(2):249–260

    Google Scholar 

  67. Wolfram S (1984) Universality and complexity in cellular automata. Phys D 10(1–2):1–35

    Article  MathSciNet  Google Scholar 

  68. Wolfram S (1994) Cellular automata and complexity: collected papers. Addison-Wesley Pub. Co

    Google Scholar 

  69. Ziv J, Lempel A (1977) A universal algorithm for sequential data compression. IEEE Trans Inf Theory 23(3):337–343

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

AA, MT, HABW have received funding from the European Union’s Horizon 2020 research and innovation programme FET OPEN “Challenging current thinking” under grant agreement No 858132. EG residency in UWE has been supported by funding from the Leverhulme Trust under the Visiting Research Professorship grant VP2-2018-001 and from the project the project 1200006, FONDECYT-Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Adamatzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adamatzky, A., Goles, E., Tsompanas, MA., Martínez, G.J., Wosten, H.A.B., Tegelaar, M. (2022). On Fungal Automata. In: Adamatzky, A. (eds) Automata and Complexity. Emergence, Complexity and Computation, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-030-92551-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92551-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92550-5

  • Online ISBN: 978-3-030-92551-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics