Skip to main content

Unpaired Learning of Roadway-Level Traffic Paths from Trajectories

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2021)

Abstract

Traffic path data can be used as the basis for traffic monitoring and other technologies, which is essential for developing traffic-related technologies. Traditional methods of traffic path data extraction can no longer meet the needs because they cannot solve the problem of lacking standard benchmark data that may exist in the traffic field. Deep learning-based path extraction methods using large-scale data are a class of promising approaches. However, most of the deep learning-based path extraction methods are supervised and rely on paired training data. This paper proposes an unpaired learning method for fine-grained roadway-level paths from trajectory data based on CycleGAN. The method constructs spatio-temporal features based on HSV color space from trajectories which can enhance the model’s ability to recognize the roadway details. It transforms the features using convolutional layers, which can preserve the spatio-temporal information of the features, thus making the extraction results more accurate. We conduct experiments using urban and maritime traffic trajectory data and compare the proposed method with the state-of-the-art methods. The results of our model have more roadway level details, higher precision and F1 score than the other existing unsupervised traffic path learning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, W., Yang, N., Zhang, Y., Wang, F., Cao, T., Eklund, P.: A review of road extraction from remote sensing images. J. Traffic Transp. Eng. (English Edition) 3(3), 271–282 (2016)

    Article  Google Scholar 

  2. Liu, J., Qin, Q., Li, J., Li, Y.: Rural road extraction from high-resolution remote sensing images based on geometric feature inference. ISPRS Int. J. Geo Inf. 6(10), 314 (2017)

    Article  Google Scholar 

  3. Bae, Y., Lee, W.H., Choi, Y., Jeon, Y.W., Ra, J.B.: Automatic road extraction from remote sensing images based on a normalized second derivative map. IEEE Geosci. Remote Sens. Lett. 12(9), 1858–1862 (2015)

    Article  Google Scholar 

  4. Dai, J., Ma, R., Gong, L., Shen, Z., Wu, J.: A model-driven-to-sample-driven method for rural road extraction. Remote Sens. 13(8), 1417 (2021)

    Article  Google Scholar 

  5. Yang, X., Wang, G., Yan, J., Gao, J.: T2I-CycleGAN: a CycleGAN for maritime road network extraction from crowdsourcing spatio-temporal AIS trajectory data. In: Gao, H., Wang, X., Iqbal, M., Yin, Y., Yin, J., Gu, N. (eds.) CollaborateCom 2020. LNICST, vol. 350, pp. 203–218. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67540-0_12

    Chapter  Google Scholar 

  6. Ruan, S., Long, C., Bao, J., Li, C., Zheng, Y.: Learning to generate maps from trajectories. Proc. AAAI Conf. Artif. Intell. 34(1), 890–897 (2020)

    Google Scholar 

  7. Lu, C., Sun, Q.: Road learning extraction method based on vehicle trajectory data. acta geodaetica et cartographica sinica. J. Surveying Mapp. 49(06), 26–36 (2020)

    Google Scholar 

  8. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  9. Smith, A.R.: Color gamut transform pairs. ACM Siggraph Comput. Graph. 12(3), 12–19 (1978)

    Article  Google Scholar 

  10. Liu, B., Wu, H., Wang, Y., Liu, W.: Main road extraction from zy-3 grayscale imagery based on directional mathematical morphology and vgi prior knowledge in urban areas. PLoS ONE 10(9), e0138071 (2015)

    Article  Google Scholar 

  11. Ma, W., Z., W.: One-way distance-based spectral clustering for ship motion pattern recognition. J. Chongqing Jiaotong Univ. (Natural Sci. Edition) 34(5), 130–134 (2015)

    Google Scholar 

  12. Wu, J., Zhu, Y., Ku, T., Wang, L.: Detecting road intersections from coarse-gained GPS traces based on clustering. J. Comput. 8(11), 2959–2965 (2013)

    Google Scholar 

  13. Aronov, B., Driemel, A., Kreveld, M.V., Löffler, M., Staals, F.: Segmentation of trajectories on nonmonotone criteria. ACM Trans. Algorithms (TALG) 12(2), 1–28 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Stanojevic, R., Abbar, S., Thirumuruganathan, S., Chawla, S., Filali, F., Aleimat, A.: Robust road map inference through network alignment of trajectories. In: Proceedings of the 2018 SIAM International Conference on Data Mining, pp. 135–143. SIAM (2018)

    Google Scholar 

  15. Xie, X., Liao, W., Aghajan, H., Veelaert, P., Philips, W.: Detecting road intersections from GPS traces using longest common subsequence algorithm. ISPRS Int. J. Geo Inf. 6(1), 1 (2017)

    Article  Google Scholar 

  16. Fathi, A., Krumm, J.: Detecting road intersections from GPS traces. In: Fabrikant, S.I., Reichenbacher, T., van Kreveld, M., Schlieder, C. (eds.) GIScience 2010. LNCS, vol. 6292, pp. 56–69. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15300-6_5

    Chapter  Google Scholar 

  17. Wang, J., Rui, X., Song, X., Tan, X., Wang, C., Raghavan, V.: A novel approach for generating routable road maps from vehicle GPS traces. Int. J. Geogr. Inf. Sci. 29(1), 69–91 (2015)

    Article  Google Scholar 

  18. Wang, S., Wang, Y., Li, Y.: Efficient map reconstruction and augmentation via topological methods. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 1–10 (2015)

    Google Scholar 

  19. Ahmed, M., Karagiorgou, S., Pfoser, D., Wenk, C.: Map construction algorithms. In: Map Construction Algorithms, pp. 1–14. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25166-0_1

    Chapter  MATH  Google Scholar 

  20. Ahmed, M., Karagiorgou, S., Pfoser, D., Wenk, C.: A comparison and evaluation of map construction algorithms using vehicle tracking data. GeoInformatica 19(3), 601–632 (2015)

    Article  Google Scholar 

  21. Mariescu-Istodor, R., Fränti, P.: Cellnet: inferring road networks from GPS trajectories. ACM Trans. Spatial Algorithms Syst. (TSAS) 4(3), 1–22 (2018)

    Article  Google Scholar 

  22. Kuntzsch, C., Sester, M., Brenner, C.: Generative models for road network reconstruction. Int. J. Geogr. Inf. Sci. 30(5), 1012–1039 (2016)

    Article  Google Scholar 

  23. Furiang, T., Zhang, L., Xue, Y., Zihan, K., Qingquan, L., Kun, D.: A spatio-temporal trajectory fusion and road network generation method in accordance with cognitive laws. J. Surveying Mapp. 44(11), 1271 (2015)

    Google Scholar 

  24. Yang, W., Ai, T.: Road centerline extraction based on multi source trajectory data. Geogr. Geog. Inf. Sci. 32(003), 1–7 (2016)

    Google Scholar 

  25. Yang, W., Ai, T.: Using constrained delaunay triangulation to extract road boundary from multi-source trajectories. J. Surveying Mapp. 046(002), 237–245 (2017)

    Google Scholar 

  26. Tang, L., Chang, R., Zhang, L., Li, Q.: A road map refinement method using delaunay triangulation for big trace data. ISPRS Int. J. Geo Inf. 6(2), 45 (2017)

    Article  Google Scholar 

  27. Li, Z., Wang, G., Meng, J., Xu, Y.: The parallel and precision adaptive method of marine lane extraction based on QuadTree. In: Gao, H., Wang, X., Yin, Y., Iqbal, M. (eds.) CollaborateCom 2018. LNICST, vol. 268, pp. 170–188. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12981-1_12

    Chapter  Google Scholar 

  28. Xin, J., Zhang, X., Zhang, Z., Fang, W.: Road extraction of high-resolution remote sensing images derived from denseunet. Remote Sens. 11(21), 2499 (2019)

    Article  Google Scholar 

  29. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  30. Wang, G., Meng, J., Li, Z., Hesenius, M., Ding, W., Han, Y., Gruhn, V.: Adaptive Extraction and Refinement of Marine Lanes from Crowdsourced Trajectory Data. Mobile Networks and Applications, pp. 1392–1404 (2020)

    Google Scholar 

  31. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  32. Biagioni, J., Eriksson, J.: Inferring road maps from global positioning system traces: survey and comparative evaluation. Transp. Res. Record J. Transp. Res. Board 2291, 61–71 (2014)

    Article  Google Scholar 

  33. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  34. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  35. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  36. Chaurasia, A., Culurciello, E.: Linknet: exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP), pp. 1–4. IEEE (2017)

    Google Scholar 

  37. Zhou, L., Zhang, C., Wu, M.: D-linknet: Linknet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 182–186 (2018)

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 61832004) and Projects of International Cooperation and Exchanges NSFC (Grant No. 62061136006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiling Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jia, W., Wang, G., Yang, X., Zhang, F. (2021). Unpaired Learning of Roadway-Level Traffic Paths from Trajectories. In: Gao, H., Wang, X. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 406. Springer, Cham. https://doi.org/10.1007/978-3-030-92635-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92635-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92634-2

  • Online ISBN: 978-3-030-92635-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics