Skip to main content

Multi-UAV Cooperative Exploring for the Unknown Indoor Environment Based on Dynamic Target Tracking

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2021)

Abstract

This paper proposes a method for collaborative exploration adopting multiple UAVs in an unknown GPS-denied indoor environment. The core of this method is to use the Tracking-D*Lite algorithm to track moving targets in unknown terrain, combined with the Wall-Around algorithm based on the Bug algorithm to navigate the UAV in the unknown indoor environment. The method adopts the advantages of the above two algorithms, where the UAV applies the Wall-Around algorithm to fly around the wall and utilizes the Tracking-D*Lite algorithm to achieve collaboration among UAVs. This method is simulated and visualized by using Gazebo, and the results show that it can effectively take the advantages of multiple UAVs to explore the unknown indoor environments. Moreover, the method can also draw the boundary-contour map of the entire environment at last. Once extended to the real world, this method can be applied to dangerous buildings after earthquakes, hazardous gas factories, underground mines, or other search and rescue scenarios.

This work was supported by the National Key Research and Development Program of China(2017YFB1001901) and the National Natural Science Foundation of China under Grant No. 61906212.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Floreano, D., Wood, R.J.: Science, technology and the future of small autonomous drones. Nature 521(7553), 460–466 (2015)

    Article  Google Scholar 

  2. Cadena, C., et al.: Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans. Rob. 32(6), 1309–1332 (2016)

    Article  Google Scholar 

  3. Lumelsky, V., Stepanov, A.: Dynamic path planning for a mobile automaton with limited information on the environment. IEEE Trans. Autom. Control 31(11), 1058–1063 (1986)

    Article  Google Scholar 

  4. Lumelsky, V.J., Stepanov, A.A.: Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica 2(1), 403–430 (1987)

    Article  MathSciNet  Google Scholar 

  5. McGuire, K.N., de Croon, G., Tuyls, K.: A comparative study of bug algorithms for robot navigation. Rob. Auton. Syst. 121, 103261 (2019)

    Article  Google Scholar 

  6. Koenig, S., Likhachev, M.: Fast replanning for navigation in unknown terrain. IEEE Trans. Rob. 21(3), 354–363 (2005)

    Article  Google Scholar 

  7. Sun, X., Yeoh, W., Uras, T., Koenig, S.: Incremental ara*: an incremental anytime search algorithm for moving-target search. In: Proceedings of the International Conference on Automated Planning and Scheduling, vol. 22 (2012)

    Google Scholar 

  8. Grzonka, S., Grisetti, G., Burgard, W.: A fully autonomous indoor quadrotor. IEEE Trans. Rob. 28(1), 90–100 (2011)

    Article  Google Scholar 

  9. Bi, Y., et al.: An autonomous quadrotor for indoor exploration with laser scanner and depth camera. In: 2016 12th IEEE International Conference on Control and Automation (ICCA), pp. 50–55. IEEE (2016)

    Google Scholar 

  10. Sampedro, C., Rodriguez-Ramos, A., Bavle, H., Carrio, A., de la Puente, P., Campoy, P.: A fully-autonomous aerial robot for search and rescue applications in indoor environments using learning-based techniques. J. Intell. Rob. Syst 95(2), 601–627 (2019)

    Article  Google Scholar 

  11. Vanegas, F., Campbell, D., Eich, M., Gonzalez, F.: UAV based target finding and tracking in gps-denied and cluttered environments. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2307–2313. IEEE (2016)

    Google Scholar 

  12. Pham, H.X., La, H.M., Feil-Seifer, D., Nguyen, L.V.: Autonomous uav navigation using reinforcement learning. arXiv preprint arXiv:1801.05086 (2018)

  13. Walker, O., Vanegas, F., Gonzalez, F., Koenig, S.: A deep reinforcement learning framework for UAV navigation in indoor environments. In: 2019 IEEE Aerospace Conference, pp. 1–14. IEEE (2019)

    Google Scholar 

  14. Walker, O., Gonzalez, F., Vanegas Alvarez, F., Koenig, S.: Mutli-UAV target-finding in simulated indoor environments using deep reinforcement learning. In: 2020 IEEE Aerospace Conference. IEEE (2020)

    Google Scholar 

  15. McGuire, K., De Wagter, C., Tuyls, K., Kappen, H., de Croon, G.C.: Minimal navigation solution for a swarm of tiny flying robots to explore an unknown environment. Sci. Rob. 4(35) (2019)

    Google Scholar 

  16. Kamon, I., Rivlin, E., Rimon, E.: A new range-sensor based globally convergent navigation algorithm for mobile robots. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, pp. 429–435. IEEE (1996)

    Google Scholar 

  17. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  18. Harabor, D., Grastien, A.: Online graph pruning for pathfinding on grid maps. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 25 (2011)

    Google Scholar 

  19. Stentz, A., et al.: The focussed d\(\hat{}\)* algorithm for real-time replanning. In: IJCAI, vol. 95, pp. 1652–1659 (1995)

    Google Scholar 

  20. Modeling, control and simulation of quadrotor UAV systems (2014). http://wiki.ros.org/hector_quadrotor

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunlong Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, N., Tan, J., Wu, Y., Xu, J., Wang, H., Wu, W. (2021). Multi-UAV Cooperative Exploring for the Unknown Indoor Environment Based on Dynamic Target Tracking. In: Gao, H., Wang, X. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 406. Springer, Cham. https://doi.org/10.1007/978-3-030-92635-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92635-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92634-2

  • Online ISBN: 978-3-030-92635-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics