Skip to main content

Semi-automatic Segmentation of Tissue Regions in Digital Histopathological Image

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2021)

Abstract

Segmentation of tissue regions in the digital histopathological images refers to the identification and segmentation of tissues such as epithelium, glandular cavity, fibers, etc. Precise segmentation of tissues is key to pre-determining the regions with the greatest diagnostic value, which can support clinical diagnosis, particularly with regard to etiology and severity. In view of the uneven quality of histopathological images and the difficulty of manual segmentation. In this paper, an approach based on weakly supervised learning and deep learning has been proposed to build a semi-automatic segmentation model of tissue regions. The model uses superpixel classification to pre-segment the tissues, the tissue region boundary is preserved, and the automatic segmentation of the tissues is finally achieved based on the deep convolutional neural network. The effectiveness of the model is evaluated on 600 cervical histopathology images provided by the hospital. The results show that the proposed method achieves 82.52% mean IoU of epithelial segmentation and 81.67% mean IoU of glandular lumen segmentation in cervical histopathological images. The model is superior to traditional manual feature representation methods and classical deep convolution neural network methods in segmentation accuracy and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doorbar, J., Griffin, H.: Refining our understanding of cervical neoplasia and its cellular origins. Papillomavirus Res. 7, 176–179 (2019)

    Article  Google Scholar 

  2. Zhang, X., Liu, W., Dundar, M., et al.: Towards large-scale histopathological image analysis: hashing-based image retrieval. IEEE Trans. Med. Imag. 34, 496–506 (2015)

    Article  Google Scholar 

  3. Xu, J., Luo, X., Wang, G., et al.: A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images. Neurocomputing 191, 214–223 (2016)

    Article  Google Scholar 

  4. Ren, X., Malik, J.: Learning a classification model for segmentation. In: Tomaszewski, J.E., Gurcan, M.N. (eds.) ICCV 2003, LNCS, vol. 1, pp. 10–17. IEEE (2003). https://doi.org/10.1109/ICCV.2003.1238308

  5. Lin, B., Deng, S., et al.: FocAnnot: patch-wise active learning for intensive cell image segmentation. In: Gao, H., Wang, X., Iqbal, M., Yin, Y., Yin, J., Gu, N. (eds.) Collaborative computing: networking, applications and worksharing. CollaborateCom 2020, LNCS, Social Informatics and Telecommunications Engineering, vol 350. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-67540-0_21

  6. Linder, N., Konsti, J., Turkki, R., et al.: Identification of tumor epithelium and stroma in tissue microarrays using texture analysis. Diagn. Pathol. 7(1), 22 (2012)

    Article  Google Scholar 

  7. Hiary, H., Alomari, R.S., Saadah, M., Chaudhary, V.: Automated segmentation of stromal tissue in histology images using a voting Bayesian model. Signal, Image Video Process. 7(6), 1229–1237 (2012). https://doi.org/10.1007/s11760-012-0393-2

    Article  Google Scholar 

  8. Vu, Q.D., Graham, S., Kurc, T., et al.: Methods for segmentation and classification of digital microscopy tissue images. Front. Bioeng. Biotechnol. 7, 53 (2019)

    Article  Google Scholar 

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2017)

    Article  Google Scholar 

  10. Al-Milaji, Z., Ersoy, I., Hafiane, A., et al.: Integrating segmentation with deep learning for enhanced classification of epithelial and stromal tissues in H&E images. Patt. Recogn. Lett. 119(MAR.), 214–221 (2017)

    Google Scholar 

  11. De Bel, T., Hermsen, M., Smeets, B., et al.: Automatic segmentation of histopathological slides of renal tissue using deep learning. Medical Imaging 2018. In: Proceedings of the SPIE, LNCS, vol. 10581, pp. 1058112 (2018). https://doi.org/10.1117/12.2293717

  12. Nirschl, J.J., Janowczyk, A., Peyster, E.G., et al.: Deep learning tissue segmentation in cardiac histopathology images. In: Deep Learning for Medical Image Analysis, pp. 179–195 (2017)

    Google Scholar 

  13. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Patt. Anal. Mach. Intell. 39(4), 640–651 (2015)

    Google Scholar 

  14. Chen, H., Qi, X., Yu, L., et al.: DCAN: deep contour-aware networks for object instance segmentation from histology images. Med. Image Anal. 36, 135–146 (2017)

    Article  Google Scholar 

  15. Lahiani, A., Gildenblat, J., Klaman, I., et al.: Generalising multistain immunohistochemistry tissue segmentation using end-to-end colour deconvolution deep neural networks. IET Image Process. 13(7), 1066–1073 (2019)

    Article  Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Bulten, W., Hulsbergen-van, d.K.C., van d.L.J., et al.: Automated segmentation of epithelial tissue in prostatectomy slides using deep learning. Medical Imaging 2018. In: Proceedings of the SPIE, LNCS, vol. 10581 (2018). https://doi.org/10.1117/12.2292872

  18. Oskal, K.R.J., Risdal, M., Janssen, E.A.M., Undersrud, E.S., Gulsrud, T.O.: A U-net based approach to epidermal tissue segmentation in whole slide histopathological images. SN Appl. Sci. 1(7), 1–12 (2019). https://doi.org/10.1007/s42452-019-0694-y

    Article  Google Scholar 

  19. Chan, L., Hosseini, M.S., Rowsell, C., et al.: Histosegnet: semantic segmentation of histological tissue type in whole slide images. In: Proceedings of the IEEE International Conference on Computer Vision 2019, LNCS, pp. 10661–10670. IEEE (2019). https://doi.org/10.1109/ICCV.2019.01076

  20. Schuhmacher, D., Gerwert, K., Mosig, A.: A generic neural network approach to infer segmenting classifiers for disease-associated regions in medical image data. medRxiv (2020). https://doi.org/10.1101/2020.02.27.20028845

  21. Khan, A.M., Rajpoot, N., Treanor, D., et al.: A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Trans. Biomed. Eng. 61(6), 1729–1738 (2014)

    Article  Google Scholar 

  22. Achanta, R., Shaji, A., Smith, K., et al.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Patt. Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  23. Cruz-Roa, A., Díaz, G., Romero, E., et al.: Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization. J. Pathol. Inform. 2(2), S4 (2011)

    Article  Google Scholar 

  24. Urbán, S., Tanács, A.: Atlas-based global and local RF segmentation of head and neck organs on multimodal MRI images. In: Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis 2017, pp. 99–103. IEEE. https://doi.org/10.1109/ISPA.2017.8073577

Download references

Funding

This study is supported by Fundamental Research Funds for the Central Universities under Grant 2020CDCGRJ013 and the Science and Technology innovation ability enhancement project of Third Military Medical University under Grant 2019XQY14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengning Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, X., Chen, K., Yang, M. (2021). Semi-automatic Segmentation of Tissue Regions in Digital Histopathological Image. In: Gao, H., Wang, X. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 406. Springer, Cham. https://doi.org/10.1007/978-3-030-92635-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92635-9_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92634-2

  • Online ISBN: 978-3-030-92635-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics