Skip to main content

A Hashgraph-Based Knowledge Sharing Approach for Mobile Robot Swarm

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2021)

Abstract

Common knowledge in a group of robots, i.e., the knowledge known by everyone or nearly everyone, can significantly promote the efficiency of robot collaboration. In a decentralized environment, it can be achieved through blockchain technology. However, traditional blockchain platforms such as Ethereum are based on Proof of Work (PoW), which requires huge amounts of computation and is not suitable for robots with limited computing resources. And the lack of a stable, fully-connected network will greatly reduce the performance of the traditional blockchain technology as well. To address these challenges, we propose a novel peer-to-peer knowledge sharing approach for mobile robot swarms in this paper. This approach is based on hashgraph, a distributed ledger technology that uses directed acyclic graphs to achieve consensus and does not need huge computational power. We also enhance hashgraph to adapt it to the mobile network environment with a limited communication range for each robot and dynamic network topology in the swarm. With a set of motivated scenarios of collective decision making, we verified the effectiveness of our approach and the results show that our approach helps robot swarm collaborate more efficiently with less computation and waste of resources than the approach based on the traditional blockchain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alhafnawi, M., Hauert, S., O’Dowd, P.: Self-organised saliency detection and representation in robot swarms. IEEE Robot. Autom. Lett. 6(2), 1487–1494 (2021). https://doi.org/10.1109/LRA.2021.3057567

    Article  Google Scholar 

  2. Alsamhi, S.H., Lee, B.: Blockchain-empowered multi-robot collaboration to fight COVID-19 and future pandemics. IEEE Access 9, 44173–44197 (2021). https://doi.org/10.1109/ACCESS.2020.3032450

    Article  Google Scholar 

  3. Baird, L.: The swirlds hashgraph consensus algorithm: Fair, fast, byzantine fault tolerance

    Google Scholar 

  4. Berman, S., Halász, Á., Hsieh, M.: Ant-inspired Allocation: Top-Down Controller Design for Distributing a Robot Swarm Among Multiple Tasks, pp. 243–274. CRC Press, Boca Raton (2016)

    Google Scholar 

  5. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery. ACM Trans. Comput. Syst. 20(4), 398–461 (2002). https://doi.org/10.1145/571637.571640

    Article  Google Scholar 

  6. Correll, N., Martinoli, A.: Modeling and designing self-organized aggregation in a swarm of miniature robots. Int. J. Robot. Res. 30(5), 615–626 (2011)

    Article  Google Scholar 

  7. Ebert, J.T., Gauci, M., Nagpal, R.: Multi-feature collective decision making in robot swarms. In: AAMAS 2018, International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, pp. 1711–1719 (2018)

    Google Scholar 

  8. Eugster, P.T., Guerraoui, R., Kermarrec, A.M., Massoulie, L.: From epidemics to distributed computing. IEEE Trans. Comput. 37, 2004 (2004)

    Google Scholar 

  9. Castelló Ferrer, E.: The blockchain: a new framework for robotic swarm systems. In: Arai, K., Bhatia, R., Kapoor, S. (eds.) FTC 2018. AISC, vol. 881, pp. 1037–1058. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-02683-7_77

    Chapter  Google Scholar 

  10. Jakobsson, M., Juels, A.: Proofs of work and bread pudding protocols. In: Joint Working Conference on Secure Information Networks: Communications and Multimedia Security (1999)

    Google Scholar 

  11. Jamshidpey, A., Afsharchi, M.: Task allocation in robotic swarms: explicit communication based approaches. In: Barbosa, D., Milios, E. (eds.) CANADIAN AI 2015. LNCS (LNAI), vol. 9091, pp. 59–67. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18356-5_6

    Chapter  Google Scholar 

  12. Lafferriere, G., Williams, A., Caughman, J., Veerman, J.: Decentralized control of vehicle formations. Syst. Control Lett. 54(9), 899–910 (2005)

    Article  MathSciNet  Google Scholar 

  13. Lamport, L.: Paxos made simple. In: ACM SIGACT News (Distributed Computing Column) 32, 4 (Whole Number 121, December 2001), pp. 51–58 (2001)

    Google Scholar 

  14. Li, J., Wu, J., Li, J., Bashir, A.K., Piran, M.J., Anjum, A.: Blockchain-based trust edge knowledge inference of multi-robot systems for collaborative tasks. IEEE Commun. Mag. 59(7), 94–100 (2021). https://doi.org/10.1109/MCOM.001.2000419

    Article  Google Scholar 

  15. Lumelsky, V., Harinarayan, K.: Decentralized motion planning for multiple mobile robots: the cocktail party model. Auton. Robot. 4, 121–135 (1997). https://doi.org/10.1023/A:1008815304810

    Article  Google Scholar 

  16. Majercik, S.M.: Initial experiments in using communication swarms to improve the performance of swarm systems. In: Kuipers, F.A., Heegaard, P.E. (eds.) IWSOS 2012. LNCS, vol. 7166, pp. 109–114. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28583-7_12

    Chapter  Google Scholar 

  17. Mocanu, A., Bădică, C.: Bringing Paxos consensus in multi-agent systems. Association for Computing Machinery (2014)

    Google Scholar 

  18. Moussa, M., Beltrame, G.: On the robustness of consensus-based behaviors for robot swarms. Swarm Intell. 14, 205–231 (2020). https://doi.org/10.1007/s11721-020-00183-1

    Article  Google Scholar 

  19. Teslya, N., Smirnov, A.: Blockchain-based framework for ontology-oriented robots’ coalition formation in cyberphysical systems. MATEC Web Conf. 161(9), 03018 (2018)

    Article  Google Scholar 

  20. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. http://bitcoin.org/bitcoin.pdf

  21. Pittel, B.: On spreading a rumor. SIAM J. Appl. Math. 47(1), 213–223 (1987). https://doi.org/10.1137/0147013

    Article  MathSciNet  MATH  Google Scholar 

  22. Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: a low cost scalable robot system for collective behaviors. In: 2012 IEEE International Conference on Robotics and Automation, pp. 3293–3298 (2012). https://doi.org/10.1109/ICRA.2012.6224638

  23. Schranz, M., Umlauft, M., Sende, M., Elmenreich, W.: Swarm robotic behaviors and current applications. Front. Robot. AI 7, 36 (2020)

    Article  Google Scholar 

  24. Shi, P., Wang, H., Yang, S., Chen, C., Yang, W.: Blockchain-based trusted data sharing among trusted stakeholders in IoT. Soft. Pract. Exp. (2019). https://doi.org/10.1002/spe.2739

  25. Strobel, V., Castelló Ferrer, E., Dorigo, M.: Blockchain technology secures robot swarms: a comparison of consensus protocols and their resilience to byzantine robots. Front. Robot. AI 7, 54 (2020). https://doi.org/10.3389/frobt.2020.00054

    Article  Google Scholar 

  26. Strobel, V., Castelló Ferrer, E., Dorigo, M.: Managing byzantine robots via blockchain technology in a swarm robotics collective decision making scenario. In: AAMAS 2018, International Foundation for Autonomous Agents and Multiagent Systems, pp. 541–549 (2018)

    Google Scholar 

  27. Valentini, G., Brambilla, D., Hamann, H., Dorigo, M.: Collective perception of environmental features in a robot swarm. In: Dorigo, M., et al. (eds.) ANTS 2016. LNCS, vol. 9882, pp. 65–76. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44427-7_6

    Chapter  Google Scholar 

  28. Wang, Q., Mao, X., Yang, S., Chen, Y., Liu, X.: Grouping-based adaptive spatial formation of swarm robots in a dynamic environment. Int. J. Adv. Robot. Syst. 15 (2018). https://doi.org/10.1177/1729881418782359

  29. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2014)

    Google Scholar 

Download references

Acknowledgments

This work is partially supported by the major Science and Technology Innovation 2030 “New Generation Artificial Intelligence” project 2020AAA0104803 and Scientific Research Plan of National University of Defense Technology under Grant No. ZK-20-38.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shu, X., Ding, B., Luo, J., Fu, X., Xie, M., Li, Z. (2021). A Hashgraph-Based Knowledge Sharing Approach for Mobile Robot Swarm. In: Gao, H., Wang, X. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 407. Springer, Cham. https://doi.org/10.1007/978-3-030-92638-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92638-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92637-3

  • Online ISBN: 978-3-030-92638-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics