Skip to main content

Multi-order Proximity Graph Structure Embedding

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2021)

Abstract

Graph embedding methods convert the flexible graph structure into low-dimensional representations while maintaining the graph structure information. Most existing methods focus on learning low- or high-order graph information, and cause loss of information during the embedding process. We instead propose a new method that can learn low and high order graph information simultaneously. The method fuses structure-preserving model with random walk sampling, which learns multi-order graph structure information more efficiently. Our method also utilizes distance-based weighted negative samples to improve the representations learning. The experimental results indicate that our proposed method provides very competitive results on the node classification, node clustering and graph reconstruction tasks for four benchmark datasets, BlogCatalog, PPI, Wikipedia and email-Eu-core.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://socialcomputing.asu.edu/datasets/BlogCatalog3.

  2. 2.

    http://snap.stanford.edu/node2vec/POS.mat.

  3. 3.

    http://snap.stanford.edu/node2vec/.

  4. 4.

    http://snap.stanford.edu/data/email-Eu-core.html.

  5. 5.

    https://github.com/thunlp/OpenNE.

References

  1. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. Technical report, Stanford (2006)

    Google Scholar 

  2. Bhagat, S., Cormode, G., Muthukrishnan, S.: Node classification in social networks. In: Social Network Data Analytics, pp. 115–148. Springer, Boston (2011). https://doi.org/10.1007/978-1-4419-8462-3_5

  3. Cai, H., Zheng, V.W., Chang, K.C.C.: A comprehensive survey of graph embedding: problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9), 1616–1637 (2018)

    Article  Google Scholar 

  4. Cao, S., Lu, W., Xu, Q.: GraRep: learning graph representations with global structural information. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 891–900. ACM (2015)

    Google Scholar 

  5. Cavallari, S., Zheng, V.W., Cai, H., Chang, K.C.C., Cambria, E.: Learning community embedding with community detection and node embedding on graphs. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 377–386. ACM (2017)

    Google Scholar 

  6. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  7. Gibaja, E., Ventura, S.: A tutorial on multilabel learning. ACM Comput. Surv. (CSUR) 47(3), 52 (2015)

    Article  Google Scholar 

  8. Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  Google Scholar 

  9. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864. ACM (2016)

    Google Scholar 

  10. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, pp. 1024–1034 (2017)

    Google Scholar 

  11. Hinton, G.E.: Connectionist learning procedures. In: Machine Learning, pp. 555–610. Elsevier (1990)

    Google Scholar 

  12. Jaggi, M.: Revisiting Frank-Wolfe: projection-free sparse convex optimization. In: Proceedings of the 30th International Conference on Machine Learning, pp. 427–435 (2013)

    Google Scholar 

  13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations, ICLR 2017 (2017). https://openreview.net/forum?id=SJU4ayYgl

  14. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)

    Article  Google Scholar 

  15. McDaid, A.F., Greene, D., Hurley, N.: Normalized mutual information to evaluate overlapping community finding algorithms. arXiv preprint arXiv:1110.2515 (2011)

  16. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  17. Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity preserving graph embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1105–1114. ACM (2016)

    Google Scholar 

  18. Pan, S., Wu, J., Zhu, X., Zhang, C., Wang, Y.: Tri-party deep network representation. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, pp. 1895–1901. AAAI Press (2016)

    Google Scholar 

  19. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)

    Google Scholar 

  20. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. 105(4), 1118–1123 (2008)

    Article  Google Scholar 

  21. Rozemberczki, B., Kiss, O., Sarkar, R.: An API oriented open-source python framework for unsupervised learning on graphs. arXiv preprint arXiv:2003.04819 (2020)

  22. Sener, O., Koltun, V.: Multi-task learning as multi-objective optimization. In: Advances in Neural Information Processing Systems, pp. 527–538 (2018)

    Google Scholar 

  23. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077. International World Wide Web Conferences Steering Committee (2015)

    Google Scholar 

  24. Tsitsulin, A., Mottin, D., Karras, P., Müller, E.: VERSE: versatile graph embeddings from similarity measures. In: Proceedings of the 2018 World Wide Web Conference, pp. 539–548. International World Wide Web Conferences Steering Committee (2018)

    Google Scholar 

  25. Uysal, A.K., Gunal, S.: A novel probabilistic feature selection method for text classification. Knowl.-Based Syst. 36, 226–235 (2012)

    Article  Google Scholar 

  26. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: 6th International Conference on Learning Representations, ICLR 2018 (2018). https://openreview.net/forum?id=rJXMpikCZ

  27. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1225–1234. ACM (2016)

    Google Scholar 

  28. Wang, X., Cui, P., Wang, J., Pei, J., Zhu, W., Yang, S.: Community preserving network embedding. In: Thirty-first AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  29. Yang, D., Rosso, P., Li, B., Cudre-Mauroux, P.: NodeSketch: highly-efficient graph embeddings via recursive sketching. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1162–1172 (2019)

    Google Scholar 

  30. Yang, P., Sun, X., Li, W., Ma, S., Wu, W., Wang, H.: SGM: sequence generation model for multi-label classification. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 3915–3926 (2018)

    Google Scholar 

  31. Yang, Y.Y., Lin, Y.A., Chu, H.M., Lin, H.T.: Deep learning with a rethinking structure for multi-label classification. arXiv preprint arXiv:1802.01697 (2018)

  32. Zhang, Z., Cui, P., Wang, X., Pei, J., Yao, X., Zhu, W.: Arbitrary-order proximity preserved network embedding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2778–2786. ACM (2018)

    Google Scholar 

Download references

Acknowledgement

This paper is Supported by National Key Research and Development Program of China (Grant No. 2017YFB0803003) and National Science Foundation for Young Scientists of China (Grant No. 61702507).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Bai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, W., Jiang, L., Peng, H., Dai, Q., Bai, X. (2021). Multi-order Proximity Graph Structure Embedding. In: Gao, H., Wang, X. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 407. Springer, Cham. https://doi.org/10.1007/978-3-030-92638-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92638-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92637-3

  • Online ISBN: 978-3-030-92638-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics