Abstract
Mobile edge computing (MEC) is an emerging paradigm to meet the increasing real-time performance demands for Internet of Things and mobile applications. By offloading the computationally intensive workloads to edge servers, the quality of service (QoS) could be greatly improved. However, with the growing popularity of MEC, the MEC systems grow extremely large, and thus the QoS optimization suffers from search space explosion problem, making it impractical in real-life scenarios. To attack this challenge, this paper studies the joint optimization of task offloading and computational resource allocation for large-scale MEC systems. We formulate this problem as a cost minimization problem and illustrate the NP-hardness of this problem. In order to solve this problem, we divide the original problem into two sub-problems and introduce the theory of Ordinal Optimization (OO) to search for a near-optimal computing offloading and resource allocation policy within a significantly reduced search space. Finally, the efficacy of our approach is validated by simulation experiments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Forecast, G.: Cisco visual networking index: global mobile data traffic forecast update, 2017–2022. Update 2017, 2022 (2019)
Azuma, R.T.: A survey of augmented reality. Presence Teleoperators Virtual Environ. 6(4), 355–385 (1997)
Ranjan, N., Mundada, K., Phaltane, K., Ahmad, S.: A survey on techniques in NLP. Int. J. Comput. Appl. 134(8), 6–9 (2016)
Zhao, Q.: A survey on virtual reality. Sci. China Ser. F Inf. Sci. 52(3), 348–400 (2009)
Badue, C., et al.: Self-driving cars: a survey. Expert Syst. Appli. 165, 113816 (2020)
Kan, T.Y., Chiang, Y., Wei, H.Y.: Task offloading and resource allocation in mobile-edge computing system. In: 2018 27th Wireless and Optical Communication Conference (WOCC), pp. 1–4. IEEE (2018)
Mach, P., Becvar, Z.: Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun. Surv. Tutorials 19(3), 1628–1656 (2017)
Hu, Y.C., Patel, M., Sabella, D., Sprecher, N., Young, V.: Mobile edge computing-a key technology towards 5G. ETSI White Paper 11(11), 1–16 (2015)
Huang, J., Zhang, C., Zhang, J.: A multi-queue approach of energy efficient task scheduling for sensor hubs. Chin. J. Electron. 29(2), 242–247 (2020)
Liu, J., Mao, Y., Zhang, J., Letaief, K.B.: Delay-optimal computation task scheduling for mobile-edge computing systems. In: 2016 IEEE International Symposium on Information Theory (ISIT), pp. 1451–1455. IEEE (2016)
Mao, Y., Zhang, J., Song, S., Letaief, K.B.: Power-delay tradeoff in multi-user mobile-edge computing systems. In: 2016 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2016)
Xu, Z., Wang, Y., Tang, J., Wang, J., Gursoy, M.C.: A deep reinforcement learning based framework for power-efficient resource allocation in cloud rans. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2017)
Li, J., Gao, H., Lv, T., Lu, Y.: Deep reinforcement learning based computation offloading and resource allocation for mec. In: 2018 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6. IEEE (2018)
Huang, J., Li, S., Chen, Y.: Revenue-optimal task scheduling and resource management for IoT batch jobs in mobile edge computing. Peer-to-Peer Netw. Appl. 13(5), 1776–1787 (2020)
Ge, X., Tu, S., Mao, G., Wang, C.X., Han, T.: 5G ultra-dense cellular networks. IEEE Wirel. Commun. 23(1), 72–79 (2016). https://doi.org/10.1109/MWC.2016.7422408
Chen, M., Hao, Y.: Task offloading for mobile edge computing in software defined ultra-dense network. IEEE J. Sel. Areas Commun. 36(3), 587–597 (2018)
Gao, Y., Guan, H., Qi, Z., Wang, B., Liu, L.: Quality of service aware power management for virtualized data centers. J. Syst. Archit. 59(4–5), 245–259 (2013)
Fan, X., Weber, W.D., Barroso, L.A.: Power provisioning for a warehouse-sized computer. ACM SIGARCH Comput. Archit. News 35(2), 13–23 (2007)
Pochet, Y., Wolsey, L.A.: Production Planning by Mixed Integer Programming. Springer Science and Business Media, Heidelberg (2006)
Vu, T.T., Van Huynh, N., Hoang, D.T., Nguyen, D.N., Dutkiewicz, E.: Offloading energy efficiency with delay constraint for cooperative mobile edge computing networks. In: 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2018)
Ho, Y.C., Sreenivas, R., Vakili, P.: Ordinal optimization of DEDS. Discrete Event Dyn. Syst. 2(1), 61–88 (1992)
Lau, T.E., Ho, Y.C.: Universal alignment probabilities and subset selection for ordinal optimization. J. Optim. Theory Appl. 93(3), 455–489 (1997)
Ho, Y.C., Zhao, Q.C., Jia, Q.S.: Ordinal Optimization: Soft Optimization for Hard Problems. Springer Science & Business Media, Heidelberg (2008)
Dayarathna, M., Wen, Y., Fan, R.: Data center energy consumption modeling: a survey. IEEE Commun. Surv Tutorials 18(1), 732–794 (2015)
Liu, Z., Yang, Y., Wang, K., Shao, Z., Zhang, J.: Post: parallel offloading of splittable tasks in heterogeneous fog networks. IEEE Internet Things J. 7(4), 3170–3183 (2020)
Li, Y., Wang, S.: An energy-aware edge server placement algorithm in mobile edge computing. In: 2018 IEEE International Conference on Edge Computing (EDGE), pp. 66–73. IEEE (2018)
Zhang, Y., Niyato, D., Wang, P.: Offloading in mobile cloudlet systems with intermittent connectivity. IEEE Trans. Mob. Comput. 14(12), 2516–2529 (2015)
Acknowledgment
This work is supported by Beijing Nova Program (No. Z201100006820082), National Natural Science Foundation of China (No. 61972414), National Key Research and Development Plan (No. 2016YFC0303700), Beijing Natural Science Foundation (No. 4202066), and the Fundamental Research Funds for Central Universities (Nos. 2462018YJRC040 and 2462020YJRC001).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Tan, Y., Ali, S., Wang, H., Huang, J. (2021). An OO-Based Approach of Computing Offloading and Resource Allocation for Large-Scale Mobile Edge Computing Systems. In: Gao, H., Wang, X. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 407. Springer, Cham. https://doi.org/10.1007/978-3-030-92638-0_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-92638-0_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92637-3
Online ISBN: 978-3-030-92638-0
eBook Packages: Computer ScienceComputer Science (R0)