Skip to main content

Optimizing Registration Based Encryption

  • Conference paper
  • First Online:
Cryptography and Coding (IMACC 2021)

Abstract

The recent work of Garg et al. from TCC’18 introduced the notion of registration based encryption (RBE). The principal motivation behind RBE is to address the key escrow issue of identity based encryption (IBE), where an IBE authority is trusted to generate private keys for all users in the system. Although RBE has excellent asymptotic properties, it is currently impractical; in our estimate, ciphertext size would be about 11 TB in an RBE deployment supporting 2 billion users.

Motivated by this observation, our work attempts to reduce the concrete communication and computation cost of the current state-of-the-art construction. Our contribution is two-fold. First, we replace the usage of Merkle trees in RBE with crit-bit trees, a form of PATRICIA trie, without relaxing any of the original efficiency requirements introduced by Garg et al. This change reduces the ciphertext size by 15% and the computation cost of decryption by 30%. Second, we observe that increasing RBE’s public parameters by a few hundred kilobytes could reduce the ciphertext size by an additional 50%. Overall, our work decreases the ciphertext size by 57.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    WhatsApp implements end-to-end encryption and has 2 billion users [13].

  2. 2.

    Free-XOR [26] is an optimization for garbled circuits which allows the garbler to create the garbled truth table “for free”, without symmetric key operations.

  3. 3.

    We assume the identities can be ordered.

  4. 4.

    If \(\mathcal {C}\) stores a tuple, it means appending the tuple to \(\mathcal {C}\)’s local state so that it can be accessed later.

  5. 5.

    A path is valid when the adjacent nodes obey the hash-pointer constraint.

References

  1. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40061-5_29

    Chapter  Google Scholar 

  2. Barak, B., et al.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_1

    Chapter  Google Scholar 

  3. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796. ACM Press, October 2012

    Google Scholar 

  4. Bernstein, D.J.: Crit-bit trees. https://cr.yp.to/critbit.html. Accessed 10 Feb 2021

  5. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13

    Chapter  Google Scholar 

  6. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_16

    Chapter  Google Scholar 

  7. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE, leakage resilience and circular security from new assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 535–564. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_20

    Chapter  Google Scholar 

  8. Certicom Research: SEC 2: Recommended elliptic curve domain parameters, January 2010. https://www.secg.org/sec2-v2.pdf. Accessed 26 Feb 2021

  9. Chow, S.S.M.: Removing Escrow from identity-based encryption. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 256–276. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1_15

    Chapter  Google Scholar 

  10. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

    Article  MathSciNet  Google Scholar 

  11. Döttling, N., Garg, S., Hajiabadi, M., Masny, D.: New constructions of identity-based and key-dependent message secure encryption schemes. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 3–31. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5_1

    Chapter  MATH  Google Scholar 

  12. Drmota, M., Fuchs, M., Hwang, H.K., Neininger, R.: External profile of symmetric digital search trees (extended abstract). In: 2017 Proceedings of the Meeting on Analytic Algorithmics and Combinatorics (ANALCO), pp. 124–130 (2017). https://epubs.siam.org/doi/abs/10.1137/1.9781611974775.12

  13. Facebook: Two billion users-connecting the world privately, February 2020. https://about.fb.com/news/2020/02/two-billion-users/. Accessed 12 Feb 2021

  14. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.D.: Cuckoo filter: practically better than bloom. In: Proceedings of the 10th ACM International on Conference on Emerging Networking Experiments and Technologies, pp. 75–88, CoNEXT 2014. Association for Computing Machinery, New York, NY, USA (2014). https://doi.org/10.1145/2674005.2674994

  15. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

    Google Scholar 

  16. Garg, S., Hajiabadi, M., Mahmoody, M., Rahimi, A.: Registration-based encryption: removing private-key generator from IBE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp. 689–718. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6_25

    Chapter  Google Scholar 

  17. Garg, S., Hajiabadi, M., Mahmoody, M., Rahimi, A., Sekar, S.: Registration-based encryption from standard assumptions. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 63–93. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_3

    Chapter  Google Scholar 

  18. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 218–229, STOC 1987. Association for Computing Machinery, New York, NY, USA (1987). https://doi.org/10.1145/28395.28420

  19. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker keeping secret all partial information. In: 14th ACM STOC, pp. 365–377. ACM Press, May 1982

    Google Scholar 

  20. Goyal, R., Vusirikala, S.: Verifiable registration-based encryption. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 621–651. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_21

    Chapter  Google Scholar 

  21. Hubacek, P., Wichs, D.: On the communication complexity of secure function evaluation with long output. In: Roughgarden, T. (ed.) ITCS 2015, pp. 163–172. ACM, January 2015

    Google Scholar 

  22. Jayaraman, B., Li, H., Evans, D.: Decentralized certificate authorities (2017). https://arxiv.org/pdf/1706.03370.pdf

  23. Kate, A., Goldberg, I.: Distributed private-key generators for identity-based cryptography. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 436–453. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-4_27

    Chapter  MATH  Google Scholar 

  24. Knessl, C., Szpankowski, W.: Limit laws for the height in Patricia tries. J. Algorithms 44(1), 63–97 (2002). https://doi.org/10.1016/S0196-6774(02)00212-2

  25. Knuth, D.E.: The Art of Computer Programming, vol. 3, 2nd edn. Addison Wesley Longman, Redwood City (1998)

    MATH  Google Scholar 

  26. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3_40

    Chapter  MATH  Google Scholar 

  27. Langley, A.: Crit-bit trees, September 2008. https://www.imperialviolet.org/binary/critbit.pdf. Accessed 10 Feb 2021

  28. Melara, M.S., Blankstein, A., Bonneau, J., Felten, E.W., Freedman, M.J.: CONIKS: bringing key transparency to end users. In: Jung, J., Holz, T. (eds.) USENIX Security 2015, pp. 383–398. USENIX Association, August 2015

    Google Scholar 

  29. Morrison, D.R.: Patricia-practical algorithm to retrieve information coded in alphanumeric. J. ACM 15(4), 514–534 (1968). https://doi.org/10.1145/321479.321481

  30. Nilsson, S., Tikkanen, M.: An experimental study of compression methods for dynamic tries. Algorithmica 33(1), 19–33 (2002). https://doi.org/10.1007/s00453-001-0102-y

  31. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Commun. Assoc. Comput. Mach. 21(2), 120–126 (1978)

    MathSciNet  MATH  Google Scholar 

  32. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_27

    Chapter  Google Scholar 

  33. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1984). https://doi.org/10.1007/3-540-39568-7_5

    Chapter  Google Scholar 

  34. Szpankowski, W.: Patricia tries again revisited. J. ACM 37(4), 691–711 (1990). https://doi.org/10.1145/96559.214080

Download references

Acknowledgments

This work was supported in part by CyberSecurity Research Flanders with reference number VR20192203, by ERC Advanced Grant ERC-2015-AdG-IMPaCT, by the Defense Advanced Research Projects Agency (DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under contract No. FA8750-19-C-0502 (Approved for Public Release, Distribution Unlimited), and by the FWO under an Odysseus project GOH9718N. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the ERC, DARPA, the US Government or the FWO. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel P. Smart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cong, K., Eldefrawy, K., Smart, N.P. (2021). Optimizing Registration Based Encryption. In: Paterson, M.B. (eds) Cryptography and Coding. IMACC 2021. Lecture Notes in Computer Science(), vol 13129. Springer, Cham. https://doi.org/10.1007/978-3-030-92641-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92641-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92640-3

  • Online ISBN: 978-3-030-92641-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics