Skip to main content

Cranial Implant Design Using V-Net Based Region of Interest Reconstruction

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13123))

Abstract

Cranial implant design is a sophisticated time-intensive process performed by specialists uniquely for each patient using a set of standardized cranioplasty procedures. Automating the design of cranial implants for the ‘in-Operating-Room’ (in-OR) manufacturing pipeline is required to perform cranioplasty immediately after the primary surgery, thereby reducing the overall surgery time. In this manuscript, we propose an efficient cranial implant design workflow through a two-step approach in which we use two V-Net architectures, one to extract the region of cranial defect from the low-resolution skull and the other to reconstruct the cranial defect in the high-resolution skull. The extracted defective cranium is subtracted from the reconstructed cranium and is post-processed to obtain the fine implant. We further performed experiments to manufacture the cranial implant predicted by our proposed method through 3D printing, using titanium-aluminium (Ti6-Al4-V) alloy, a standard material used for medical prosthetics and implants. The proposed method is trained and evaluated on the data provided by the MICCAI 2021 AutoImplant Challenge. Our method performed well, giving a Dice Similarity Coefficient (DSC) of 0.90, border DSC of 0.95, and a 95-percentile of the Hausdorff Distance (HD95) of 2.02 mm over the test dataset (000.nrrd–109.nrrd).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahn, S.H., Montero, M., Odell, D., Roundy, S., Wright, P.K.: Anisotropic material properties of fused deposition modeling abs. Rap. Prototyp. J. 8, 248–257 (2002)

    Google Scholar 

  2. Bayat, A., Shit, S., Kilian, A., Liechtenstein, J.T., Kirschke, J.S., Menze, B.H.: Cranial implant prediction using low-resolution 3D shape completion and high-resolution 2D refinement. In: Cranial Implant Design Challenge. pp. 77–84. Springer (2020)

    Google Scholar 

  3. von Campe, G., Pistracher, K.: Patient specific implants (PSI). In: Li, J., Egger, J. (eds.) AutoImplant 2020. LNCS, vol. 12439, pp. 1–9. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64327-0_1

    Chapter  Google Scholar 

  4. Casamitjana, A., Catà, M., Sánchez, I., Combalia, M., Vilaplana, V.: Cascaded V-Net using ROI masks for brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 381–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_33

    Chapter  Google Scholar 

  5. Eder, M., Li, J., Egger, J.: Learning volumetric shape super-resolution for cranial implant design. In: Cranial Implant Design Challenge. pp. 104–113. Springer, Cham (2020)

    Google Scholar 

  6. Ellis, D.G., Aizenberg, M.R.: Deep learning using augmentation via registration: 1st place solution to the autoimplant 2020 challenge. In: Cranial Implant Design Challenge. pp. 47–55. Springer (2020)

    Google Scholar 

  7. Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.C., Pujol, S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M., et al.: 3D slicer as an image computing platform for the quantitative imaging network. Mag. Resonan. Imag. 30(9), 1323–1341 (2012)

    Article  Google Scholar 

  8. Jin, Y., Li, J., Egger, J.: High-resolution cranial implant prediction via patch-wise training. In: Cranial Implant Design Challenge. pp. 94–103. Springer (2020)

    Google Scholar 

  9. Kodym, O., Španěl, M., Herout, A.: Cranial defect reconstruction using cascaded cnn with alignment. In: Cranial Implant Design Challenge. pp. 56–64. Springer (2020)

    Google Scholar 

  10. Kruth, J.P., Froyen, L., Van Vaerenbergh, J., Mercelis, P., Rombouts, M., Lauwers, B.: Selective laser melting of iron-based powder. J. Mater. Process. Technol. 149(1–3), 616–622 (2004)

    Article  Google Scholar 

  11. Lei, Y., Tian, S., He, X., Wang, T., Wang, B., Patel, P., Jani, A.B., Mao, H., Curran, W.J., Liu, T., et al.: Ultrasound prostate segmentation based on multidirectional deeply supervised v-net. Med. Phys. 46(7), 3194–3206 (2019)

    Article  Google Scholar 

  12. Li, J., Egger, J.: Towards the Automatization of Cranial Implant Design in Cranioplasty. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64327-0

  13. Li, J., Pepe, A., Gsaxner, C., Campe, G., Egger, J.: A baseline approach for AutoImplant: the MICCAI 2020 cranial implant design challenge. In: Syeda-Mahmood, T., Drechsler, K., Greenspan, H., Madabhushi, A., Karargyris, A., Linguraru, M.G., Oyarzun Laura, C., Shekhar, R., Wesarg, S., González Ballester, M.Á., Erdt, M. (eds.) CLIP/ML-CDS -2020. LNCS, vol. 12445, pp. 75–84. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60946-7_8

    Chapter  Google Scholar 

  14. Li, J., et al.: Autoimplant 2020-first miccai challenge on automatic cranial implant design. IEEE Trans. Med. Imag. 40(9), 2329–2342 (2021). https://doi.org/10.1109/TMI.2021.3077047

    Article  Google Scholar 

  15. Mainprize, J.G., Fishman, Z., Hardisty, M.R.: Shape completion by U-Net: an approach to the AutoImplant MICCAI cranial implant design challenge. In: Li, J., Egger, J. (eds.) AutoImplant 2020. LNCS, vol. 12439, pp. 65–76. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64327-0_8

    Chapter  Google Scholar 

  16. Matzkin, F., Newcombe, V., Glocker, B., Ferrante, E.: Cranial implant design via virtual craniectomy with shape priors. In: Cranial Implant Design Challenge, pp. 37–46. Springer, Cham (2020)

    Google Scholar 

  17. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  18. Nalepa, J., et al.: Data augmentation via image registration. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 4250–4254. IEEE (2019)

    Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Shi, H., Chen, X.: Cranial implant design through multiaxial slice inpainting using deep learning. In: Li, J., Egger, J. (eds.) AutoImplant 2020. LNCS, vol. 12439, pp. 28–36. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64327-0_4

    Chapter  Google Scholar 

  21. Wang, B., Liu, Z., Li, Y., Xiao, X., Zhang, R., Cao, Y., Cui, L., Zhang, P.: Cranial implant design using a deep learning method with anatomical regularization. In: Li, J., Egger, J. (eds.) AutoImplant 2020. LNCS, vol. 12439, pp. 85–93. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64327-0_10

    Chapter  Google Scholar 

  22. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J., et al.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D. (ed.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrahmanyam Gorthi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pathak, S., Sindhura, C., Gorthi, R.K.S.S., Kiran, D.V., Gorthi, S. (2021). Cranial Implant Design Using V-Net Based Region of Interest Reconstruction. In: Li, J., Egger, J. (eds) Towards the Automatization of Cranial Implant Design in Cranioplasty II. AutoImplant 2021. Lecture Notes in Computer Science(), vol 13123. Springer, Cham. https://doi.org/10.1007/978-3-030-92652-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92652-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92651-9

  • Online ISBN: 978-3-030-92652-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics