Skip to main content

Two-Stage Stochastic Max-Weight Independent Set Problems

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13135))

  • 950 Accesses

Abstract

The two-stage stochastic maximum-weight independent set problem extends the classical independent set problem. Given an independent system associated with one deterministic weight function and a random weight function both defined over the same ground set, the problem is to select two nonoverlapping independent subsets, one in the first stage and the other in the second stage, whose union has the maximum total expected weight. In this paper, we show that this problem can be formulated as a submodular function maximization subject to a matroid constraint if the independent system is a matroid. Furthermore, we also show that the two-stage stochastic maximum-weight knapsack independent set problem is neither submodular nor supermodular maximization problem by designing a counterexample.

This paper is supported by National Science Foundation of China (No. 12001335) and Natural Science Foundation of Shandong Province (Nos. ZR2019PA004, ZR2020MA029) of China.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balkanski, E., Rubinstein, A., Singer, Y.: An exponential speedup in parallel running time for submodular maximization without loss in approximation. In: Proceedings of SODA, pp. 283–302 (2019)

    Google Scholar 

  2. Buchbinder N., Feldman M.: Deterministic algorithms for submodular maximization problems. ACM Transactions on Algorithms 14(3), 1–20 (2018)

    Google Scholar 

  3. Buchbinder N., Feldman M., Garg M.: Deterministic (1/2+\(\epsilon \))-approximation for submodular maximization over a matroid. In: Proceedings of SODA, pp. 241–254 (2019)

    Google Scholar 

  4. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Comput. 40, 1740–1766 (2011)

    Article  MathSciNet  Google Scholar 

  5. Chekuri C., Quanrud K.: Parallelizing greedy for submodular set function maximization in matroids and beyond. In: Proceedings of STOC, pp. 78–89 (2018)

    Google Scholar 

  6. Dyer, M., Stougie, L.: Computational complexity of stochastic programming problems. Math. Program. 106, 423–432 (2006)

    Article  MathSciNet  Google Scholar 

  7. Edmonds, J.: Matroids and the greedy algorithm. Math. Program. 1, 127–136 (1971)

    Article  MathSciNet  Google Scholar 

  8. Flaxman A.D., Frieze A., Krivelevich M.: On the random 2-stage minimum spanning tree. In: Proceedings of SODA, pp. 919–926 (2005)

    Google Scholar 

  9. Gupta, A., Kumar, A., Pál, M., Roughgarden, T.: Approximations via cost-sharing: Simpler and better approximation algorithms for network design. J. ACM 54, 1–38 (2007)

    Article  MathSciNet  Google Scholar 

  10. Gupta, A., Pál, M., Ravi, R., Sinha, A.: Sampling and cost-sharing: approximation algorithms for stochastic optimization problems. SIAM J. Comput. 40, 1361–1401 (2011)

    Article  MathSciNet  Google Scholar 

  11. He, Q., Ahmed, S., Nemhauser, G.L.: Sell or hold: a simple two-stage stochastic combinatorial optimization problem. Oper. Res. Lett. 40, 69–73 (2012)

    Article  MathSciNet  Google Scholar 

  12. Kong, N., Schaefer, A.J.: A factor \(\frac{1}{2}\) approximation algorithm for two-stage stochastic matching problems. Eur. J. Oper. Res. 172, 740–746 (2006)

    Article  Google Scholar 

  13. Korte B., Vygen J.: Combinatorial Optimization: Theory and Algorithms, Fifth Edition. Springer (2011)

    Google Scholar 

  14. Kosuch, S.: Approximability of the two-stage stochastic knapsack problem with discretely distributed weights. Disc. Appl. Math. 165, 195–204 (2014)

    Article  MathSciNet  Google Scholar 

  15. Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Maximizing nonmonotone submodular functions under matroid or knapsack constraints. SIAM J. Disc. Math. 23, 2053–2078 (2010)

    Article  MathSciNet  Google Scholar 

  16. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-I. Math. Program. 14, 265–294 (1978)

    Article  MathSciNet  Google Scholar 

  17. Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32, 41–43 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, M., Liu, Q., Zhou, Y. (2021). Two-Stage Stochastic Max-Weight Independent Set Problems. In: Du, DZ., Du, D., Wu, C., Xu, D. (eds) Combinatorial Optimization and Applications. COCOA 2021. Lecture Notes in Computer Science(), vol 13135. Springer, Cham. https://doi.org/10.1007/978-3-030-92681-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92681-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92680-9

  • Online ISBN: 978-3-030-92681-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics