Abstract
We study the computational complexity of the popular board game backgammon. We show that deciding whether a player can win from a given board configuration is NP-Hard, PSPACE-Hard, and EXPTIME-Hard under different settings of known and unknown opponents’ strategies and dice rolls. Our work answers an open question posed by Erik Demaine in 2001. In particular, for the real life setting where the opponent’s strategy and dice rolls are unknown, we prove that determining whether a player can win is EXPTIME-Hard. Interestingly, it is not clear what complexity class strictly contains each problem we consider because backgammon games can theoretically continue indefinitely as a result of the capture rule.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baffier, J.F., et al.: Hanabi is NP-hard, even for cheaters who look at their cards. Theoret. Comput. Sci. 675, 43–55 (2017)
Berliner, H.J.: Backgammon computer program beats world champion. Artif. Intell. 14(2), 205–220 (1980)
Bosboom, J., Demaine, E.D., Hesterberg, A., Lynch, J., Waingarten, E.: Mario kart is hard. In: Japanese Conference on Discrete and Computational Geometry and Graphs, pp. 49–59. Springer (2015). https://doi.org/10.1007/978-3-319-48532-4_5
Buchin, K., Hagedoorn, M., Kostitsyna, I., van Mulken, M.: Dots & boxes is pspace-complete. arXiv preprint arXiv:2105.02837 (2021)
Demaine, E.D.: Playing games with algorithms: algorithmic combinatorial game theory. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 18–33. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44683-4_3
Fraenkel, A.S., Lichtenstein, D.: Computing a perfect strategy for n \(\times \) n chess requires time exponential in n. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 278–293. Springer, Heidelberg (1981). https://doi.org/10.1007/3-540-10843-2_23
Guala, L., Leucci, S., Natale, E.: Bejeweled, candy crush and other match-three games are (NP-) hard. In: 2014 IEEE Conference on Computational Intelligence and Games, pp. 1–8. IEEE (2014)
Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. CRC Press, Boca Raton (2009)
Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Springer (1972). https://doi.org/10.1007/978-1-4684-2001-2_9
Keeler, E.B., Spencer, J.: Optimal doubling in backgammon. Oper. Res. 23(6), 1063–1071 (1975)
Pollack, J.B., Blair, A.D.: Co-evolution in the successful learning of backgammon strategy. Mach. Learn. 32(3), 225–240 (1998)
Reisch, S.: Hex ist pspace-vollständig. Acta Informatica 15(2), 167–191 (1981)
Robson, J.M.: The complexity of go. In: Proceedings of the 9th World Computer Congress on Information Processing 1983, pp. 413–417 (1983)
Robson, J.M.: N by N checkers is Exptime complete. SIAM J. Comput. 13(2), 252–267 (1984)
Schaefer, T.J.: On the complexity of some two-person perfect-information games. J. Comput. Syst. Sci. 16(2), 185–225 (1978)
Stockmeyer, L.J., Chandra, A.K.: Provably difficult combinatorial games. SIAM J. Comput. 8(2), 151–174 (1979)
Tesauro, G.: TD-Gammon, a self-teaching backgammon program, achieves master-level play. Neural Comput. 6(2), 215–219 (1994)
Tesauro, G.: Programming backgammon using self-teaching neural nets. Artif. Intell. 134(1–2), 181–199 (2002)
Thorp, E.O.: Backgammon: the optimal strategy for the pure running game. Optimal Play: Mathematical Studies of Games and Gambling. Institute for the Study of Gambling and Commercial Gaming, University of Nevada, Reno, pp. 237–265 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Witter, R.T. (2021). Backgammon Is Hard. In: Du, DZ., Du, D., Wu, C., Xu, D. (eds) Combinatorial Optimization and Applications. COCOA 2021. Lecture Notes in Computer Science(), vol 13135. Springer, Cham. https://doi.org/10.1007/978-3-030-92681-6_38
Download citation
DOI: https://doi.org/10.1007/978-3-030-92681-6_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92680-9
Online ISBN: 978-3-030-92681-6
eBook Packages: Computer ScienceComputer Science (R0)