Skip to main content

Backgammon Is Hard

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13135))

  • 951 Accesses

Abstract

We study the computational complexity of the popular board game backgammon. We show that deciding whether a player can win from a given board configuration is NP-Hard, PSPACE-Hard, and EXPTIME-Hard under different settings of known and unknown opponents’ strategies and dice rolls. Our work answers an open question posed by Erik Demaine in 2001. In particular, for the real life setting where the opponent’s strategy and dice rolls are unknown, we prove that determining whether a player can win is EXPTIME-Hard. Interestingly, it is not clear what complexity class strictly contains each problem we consider because backgammon games can theoretically continue indefinitely as a result of the capture rule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baffier, J.F., et al.: Hanabi is NP-hard, even for cheaters who look at their cards. Theoret. Comput. Sci. 675, 43–55 (2017)

    Article  MathSciNet  Google Scholar 

  2. Berliner, H.J.: Backgammon computer program beats world champion. Artif. Intell. 14(2), 205–220 (1980)

    Article  Google Scholar 

  3. Bosboom, J., Demaine, E.D., Hesterberg, A., Lynch, J., Waingarten, E.: Mario kart is hard. In: Japanese Conference on Discrete and Computational Geometry and Graphs, pp. 49–59. Springer (2015). https://doi.org/10.1007/978-3-319-48532-4_5

  4. Buchin, K., Hagedoorn, M., Kostitsyna, I., van Mulken, M.: Dots & boxes is pspace-complete. arXiv preprint arXiv:2105.02837 (2021)

  5. Demaine, E.D.: Playing games with algorithms: algorithmic combinatorial game theory. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 18–33. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44683-4_3

    Chapter  Google Scholar 

  6. Fraenkel, A.S., Lichtenstein, D.: Computing a perfect strategy for n \(\times \) n chess requires time exponential in n. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 278–293. Springer, Heidelberg (1981). https://doi.org/10.1007/3-540-10843-2_23

    Chapter  Google Scholar 

  7. Guala, L., Leucci, S., Natale, E.: Bejeweled, candy crush and other match-three games are (NP-) hard. In: 2014 IEEE Conference on Computational Intelligence and Games, pp. 1–8. IEEE (2014)

    Google Scholar 

  8. Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. CRC Press, Boca Raton (2009)

    Google Scholar 

  9. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Springer (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

  10. Keeler, E.B., Spencer, J.: Optimal doubling in backgammon. Oper. Res. 23(6), 1063–1071 (1975)

    Article  MathSciNet  Google Scholar 

  11. Pollack, J.B., Blair, A.D.: Co-evolution in the successful learning of backgammon strategy. Mach. Learn. 32(3), 225–240 (1998)

    Article  Google Scholar 

  12. Reisch, S.: Hex ist pspace-vollständig. Acta Informatica 15(2), 167–191 (1981)

    Article  MathSciNet  Google Scholar 

  13. Robson, J.M.: The complexity of go. In: Proceedings of the 9th World Computer Congress on Information Processing 1983, pp. 413–417 (1983)

    Google Scholar 

  14. Robson, J.M.: N by N checkers is Exptime complete. SIAM J. Comput. 13(2), 252–267 (1984)

    Article  MathSciNet  Google Scholar 

  15. Schaefer, T.J.: On the complexity of some two-person perfect-information games. J. Comput. Syst. Sci. 16(2), 185–225 (1978)

    Article  MathSciNet  Google Scholar 

  16. Stockmeyer, L.J., Chandra, A.K.: Provably difficult combinatorial games. SIAM J. Comput. 8(2), 151–174 (1979)

    Article  MathSciNet  Google Scholar 

  17. Tesauro, G.: TD-Gammon, a self-teaching backgammon program, achieves master-level play. Neural Comput. 6(2), 215–219 (1994)

    Article  Google Scholar 

  18. Tesauro, G.: Programming backgammon using self-teaching neural nets. Artif. Intell. 134(1–2), 181–199 (2002)

    Article  Google Scholar 

  19. Thorp, E.O.: Backgammon: the optimal strategy for the pure running game. Optimal Play: Mathematical Studies of Games and Gambling. Institute for the Study of Gambling and Commercial Gaming, University of Nevada, Reno, pp. 237–265 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Teal Witter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Witter, R.T. (2021). Backgammon Is Hard. In: Du, DZ., Du, D., Wu, C., Xu, D. (eds) Combinatorial Optimization and Applications. COCOA 2021. Lecture Notes in Computer Science(), vol 13135. Springer, Cham. https://doi.org/10.1007/978-3-030-92681-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92681-6_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92680-9

  • Online ISBN: 978-3-030-92681-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics