Skip to main content

The Fractional k-truncated Metric Dimension of Graphs

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13135))

  • 913 Accesses

Abstract

Let G be a graph with vertex set V(G), and let d(xy) denote the length of a shortest \(x-y\) path in G. Let k be a positive integer. For any \(x,y \in V(G)\), let \(d_k(x,y)=\min \{d(x,y), k+1\}\) and let \(R_k\{x,y\}=\{z\in V(G): d_k(x,z) \ne d_k(y,z)\}\). A set \(S \subseteq V(G)\) is a k-truncated resolving set of G if \(|S \cap R_k\{x,y\}| \ge 1\) for any distinct \(x,y\in V(G)\), and the k-truncated metric dimension \(\dim _k(G)\) of G is the minimum cardinality over all k-truncated resolving sets of G. For a function g defined on V(G) and for \(U \subseteq V(G)\), let \(g(U)=\sum _{s\in U}g(s)\). A real-valued function \(g:V(G) \rightarrow [0,1]\) is a k-truncated resolving function of G if \(g(R_k\{x,y\}) \ge 1\) for any distinct \(x, y\in V(G)\), and the fractional k-truncated metric dimension \(\dim _{k,f}(G)\) of G is \(\min \{g(V(G)): g \text{ is } \text{ a } k\text{-truncated } \text{ resolving } \text{ function } \text{ of } G\}\). Note that \(\dim _{k,f}(G)\) reduces to \(\dim _k(G)\) if the codomain of k-truncated resolving functions is restricted to \(\{0,1\}\). In this paper, we initiate the study of the fractional k-truncated metric dimension of graphs. For any connected graph G of order \(n\ge 2\), we show that \(1 \le \dim _{k,f}(G) \le \frac{n}{2}\); we characterize G satisfying \(\dim _{k,f}(G)\) equals 1 and \(\frac{n}{2}\), respectively. We also examine \(\dim _{k,f}(G)\) of some graph classes and conclude with some open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arumugam, S., Mathew, V.: The fractional metric dimension of graphs. Discrete Math. 312, 1584–1590 (2012)

    Article  MathSciNet  Google Scholar 

  2. Arumugam, S., Mathew, V., Shen, J.: On fractional metric dimension of graphs. Discrete Math. Algorithms Appl. 5, 1350037 (2013)

    Article  MathSciNet  Google Scholar 

  3. Beardon, A.F., Rodríguez-Velázquez, J.A.: On the \(k\)-metric dimension of metric spaces. Ars Math. Contemp. 16, 25–38 (2019)

    Article  MathSciNet  Google Scholar 

  4. Chartrand, G., Eroh, L., Johnson, M.A., Oellermann, O.R.: Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math. 105, 99–113 (2000)

    Article  MathSciNet  Google Scholar 

  5. Currie, J., Oellermann, O.R.: The metric dimension and metric independence of a graph. J. Combin. Math. Combin. Comput. 39, 157–167 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Eroh, L., Kang, C.X., Yi, E.: Metric dimension and zero forcing number of two families of line graphs. Math. Bohem. 139(3), 467–483 (2014)

    Article  MathSciNet  Google Scholar 

  7. Estrada-Moreno, A.: On the (\(k, t\))-metric dimension of a graph. Dissertation, Universitat Rovira i Virgili (2016)

    Google Scholar 

  8. Estrada-Moreno, A., Yero, I.G., Rodríguez-Velázquez, J.A.: On the (\(k, t\))-metric dimension of graphs. Comput. J. 64(5), 707–720 (2021)

    Article  MathSciNet  Google Scholar 

  9. Fehr, M., Gosselin, S., Oellermann, O.R.: The metric dimension of Cayley digraphs. Discrete Math. 306, 31–41 (2006)

    Article  MathSciNet  Google Scholar 

  10. Fernau, H., Rodríguez-Velázquez, J.A.: On the (adjacency) metric dimension of corona and strong product graphs and their local variants: combinatorial and computational results. Discrete Appl. Math. 236, 183–202 (2018)

    Article  MathSciNet  Google Scholar 

  11. Frongillo, R.M., Geneson, J., Lladser, M.E., Tillquist, R.C., Yi, E.: Truncated metric dimension for finite graphs (2021, Submitted)

    Google Scholar 

  12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  13. Geneson, J., Yi, E.: Broadcast dimension of graphs. arXiv:2005.07311v1 (2020). https://arxiv.org/abs/2005.07311

  14. Geneson, J., Yi, E.: The distance-\(k\) dimension of graphs. arXiv:2106.08303v2 (2021). https://arxiv.org/abs/2106.08303

  15. Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Combin. 2, 191–195 (1976)

    MathSciNet  MATH  Google Scholar 

  16. Hernando, C., Mora, M., Pelayo, I.M., Seara, C., Wood, D.R.: Extremal graph theory for metric dimension and diameter. Electron. J. Combin. 17, 1–28 (2010). Article no. R30

    Google Scholar 

  17. Jannesari, M., Omoomi, B.: The metric dimension of the lexicographic product of graphs. Discrete Math. 312(22), 3349–3356 (2012)

    Article  MathSciNet  Google Scholar 

  18. Kang, C.X.: On the fractional strong metric dimension of graphs. Discrete Appl. Math. 213, 153–161 (2016)

    Article  MathSciNet  Google Scholar 

  19. Kang, C.X., Yi, E.: The fractional strong metric dimension of graphs. In: Widmayer, P., Xu, Y., Zhu, B. (eds.) COCOA 2013. LNCS, vol. 8287, pp. 84–95. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03780-6_8

    Chapter  Google Scholar 

  20. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discrete Appl. Math. 70, 217–229 (1996)

    Article  MathSciNet  Google Scholar 

  21. Poisson, C., Zhang, P.: The metric dimension of unicyclic graphs. J. Combin. Math. Combin. Comput. 40, 17–32 (2002)

    MathSciNet  MATH  Google Scholar 

  22. Scheinerman, E.R., Ullman, D.H.: Fractional Graph Theory: A Rational Approach to the Theory of Graphs. Wiley, New York (1997)

    MATH  Google Scholar 

  23. Slater, P.J.: Leaves of trees. Congr. Numer. 14, 549–559 (1975)

    MathSciNet  MATH  Google Scholar 

  24. Tillquist, R.C.: Low-dimensional embeddings for symbolic data science. Dissertation, University of Colorado, Boulder (2020)

    Google Scholar 

  25. Tillquist, R.C., Frongillo, R.M., Lladser, M.E.: Truncated metric dimension for finite graphs. arXiv:2106.14314v1 (2021). https://arxiv.org/abs/2106.14314

  26. Yi, E.: The fractional metric dimension of permutation graphs. Acta Math. Sin. Engl. Ser. 31, 367–382 (2015)

    Article  MathSciNet  Google Scholar 

  27. Yi, E.: The fractional \(k\)-truncated metric dimension of graphs. arXiv:2108.02745v1 (2021). https://arxiv.org/abs/2108.02745

Download references

Acknowledgements

The author thanks the anonymous referees for some helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunjeong Yi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yi, E. (2021). The Fractional k-truncated Metric Dimension of Graphs. In: Du, DZ., Du, D., Wu, C., Xu, D. (eds) Combinatorial Optimization and Applications. COCOA 2021. Lecture Notes in Computer Science(), vol 13135. Springer, Cham. https://doi.org/10.1007/978-3-030-92681-6_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92681-6_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92680-9

  • Online ISBN: 978-3-030-92681-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics