Abstract
Let G be a graph with vertex set V(G), and let d(x, y) denote the length of a shortest \(x-y\) path in G. Let k be a positive integer. For any \(x,y \in V(G)\), let \(d_k(x,y)=\min \{d(x,y), k+1\}\) and let \(R_k\{x,y\}=\{z\in V(G): d_k(x,z) \ne d_k(y,z)\}\). A set \(S \subseteq V(G)\) is a k-truncated resolving set of G if \(|S \cap R_k\{x,y\}| \ge 1\) for any distinct \(x,y\in V(G)\), and the k-truncated metric dimension \(\dim _k(G)\) of G is the minimum cardinality over all k-truncated resolving sets of G. For a function g defined on V(G) and for \(U \subseteq V(G)\), let \(g(U)=\sum _{s\in U}g(s)\). A real-valued function \(g:V(G) \rightarrow [0,1]\) is a k-truncated resolving function of G if \(g(R_k\{x,y\}) \ge 1\) for any distinct \(x, y\in V(G)\), and the fractional k-truncated metric dimension \(\dim _{k,f}(G)\) of G is \(\min \{g(V(G)): g \text{ is } \text{ a } k\text{-truncated } \text{ resolving } \text{ function } \text{ of } G\}\). Note that \(\dim _{k,f}(G)\) reduces to \(\dim _k(G)\) if the codomain of k-truncated resolving functions is restricted to \(\{0,1\}\). In this paper, we initiate the study of the fractional k-truncated metric dimension of graphs. For any connected graph G of order \(n\ge 2\), we show that \(1 \le \dim _{k,f}(G) \le \frac{n}{2}\); we characterize G satisfying \(\dim _{k,f}(G)\) equals 1 and \(\frac{n}{2}\), respectively. We also examine \(\dim _{k,f}(G)\) of some graph classes and conclude with some open problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arumugam, S., Mathew, V.: The fractional metric dimension of graphs. Discrete Math. 312, 1584–1590 (2012)
Arumugam, S., Mathew, V., Shen, J.: On fractional metric dimension of graphs. Discrete Math. Algorithms Appl. 5, 1350037 (2013)
Beardon, A.F., Rodríguez-Velázquez, J.A.: On the \(k\)-metric dimension of metric spaces. Ars Math. Contemp. 16, 25–38 (2019)
Chartrand, G., Eroh, L., Johnson, M.A., Oellermann, O.R.: Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math. 105, 99–113 (2000)
Currie, J., Oellermann, O.R.: The metric dimension and metric independence of a graph. J. Combin. Math. Combin. Comput. 39, 157–167 (2001)
Eroh, L., Kang, C.X., Yi, E.: Metric dimension and zero forcing number of two families of line graphs. Math. Bohem. 139(3), 467–483 (2014)
Estrada-Moreno, A.: On the (\(k, t\))-metric dimension of a graph. Dissertation, Universitat Rovira i Virgili (2016)
Estrada-Moreno, A., Yero, I.G., Rodríguez-Velázquez, J.A.: On the (\(k, t\))-metric dimension of graphs. Comput. J. 64(5), 707–720 (2021)
Fehr, M., Gosselin, S., Oellermann, O.R.: The metric dimension of Cayley digraphs. Discrete Math. 306, 31–41 (2006)
Fernau, H., Rodríguez-Velázquez, J.A.: On the (adjacency) metric dimension of corona and strong product graphs and their local variants: combinatorial and computational results. Discrete Appl. Math. 236, 183–202 (2018)
Frongillo, R.M., Geneson, J., Lladser, M.E., Tillquist, R.C., Yi, E.: Truncated metric dimension for finite graphs (2021, Submitted)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)
Geneson, J., Yi, E.: Broadcast dimension of graphs. arXiv:2005.07311v1 (2020). https://arxiv.org/abs/2005.07311
Geneson, J., Yi, E.: The distance-\(k\) dimension of graphs. arXiv:2106.08303v2 (2021). https://arxiv.org/abs/2106.08303
Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Combin. 2, 191–195 (1976)
Hernando, C., Mora, M., Pelayo, I.M., Seara, C., Wood, D.R.: Extremal graph theory for metric dimension and diameter. Electron. J. Combin. 17, 1–28 (2010). Article no. R30
Jannesari, M., Omoomi, B.: The metric dimension of the lexicographic product of graphs. Discrete Math. 312(22), 3349–3356 (2012)
Kang, C.X.: On the fractional strong metric dimension of graphs. Discrete Appl. Math. 213, 153–161 (2016)
Kang, C.X., Yi, E.: The fractional strong metric dimension of graphs. In: Widmayer, P., Xu, Y., Zhu, B. (eds.) COCOA 2013. LNCS, vol. 8287, pp. 84–95. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03780-6_8
Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discrete Appl. Math. 70, 217–229 (1996)
Poisson, C., Zhang, P.: The metric dimension of unicyclic graphs. J. Combin. Math. Combin. Comput. 40, 17–32 (2002)
Scheinerman, E.R., Ullman, D.H.: Fractional Graph Theory: A Rational Approach to the Theory of Graphs. Wiley, New York (1997)
Slater, P.J.: Leaves of trees. Congr. Numer. 14, 549–559 (1975)
Tillquist, R.C.: Low-dimensional embeddings for symbolic data science. Dissertation, University of Colorado, Boulder (2020)
Tillquist, R.C., Frongillo, R.M., Lladser, M.E.: Truncated metric dimension for finite graphs. arXiv:2106.14314v1 (2021). https://arxiv.org/abs/2106.14314
Yi, E.: The fractional metric dimension of permutation graphs. Acta Math. Sin. Engl. Ser. 31, 367–382 (2015)
Yi, E.: The fractional \(k\)-truncated metric dimension of graphs. arXiv:2108.02745v1 (2021). https://arxiv.org/abs/2108.02745
Acknowledgements
The author thanks the anonymous referees for some helpful comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Yi, E. (2021). The Fractional k-truncated Metric Dimension of Graphs. In: Du, DZ., Du, D., Wu, C., Xu, D. (eds) Combinatorial Optimization and Applications. COCOA 2021. Lecture Notes in Computer Science(), vol 13135. Springer, Cham. https://doi.org/10.1007/978-3-030-92681-6_44
Download citation
DOI: https://doi.org/10.1007/978-3-030-92681-6_44
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92680-9
Online ISBN: 978-3-030-92681-6
eBook Packages: Computer ScienceComputer Science (R0)