Skip to main content

Which Option Is a Better Way to Improve Transfer Learning Performance?

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13135))

  • 938 Accesses

Abstract

Transfer learning has been widely applied in Artificial Intelligence of Things (AIoT) to support intelligent services. Typically, collection and collaboration are two mainstreaming methods to improve transfer learning performance, whose efficiency has been evaluated by real-data experimental results but lacks validation of theoretical analysis. In order to provide guidance of implementing transfer learning in real applications, a theoretical analysis is in desired need to help us fully understand how to efficiently improve transfer learning performance. To this end, in this paper, we conduct comprehensive analysis on the methods of enhancing transfer learning performance. More specifically, we prove the answers to three critical questions for transfer learning: i) by comparing collecting instances and collecting attributes, which collection approach is more efficient? ii) is collaborative transfer learning efficient? and iii) by comparing collection with collaboration, which one is more efficient? Our answers and findings can work as fundamental guidance for developing transfer learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. AL-Sammarraie, O.A., Bashir, M.A.: Generalization of Newton’s forward interpolation formula. Int. J. Sci. Res. Publ. (2015)

    Google Scholar 

  2. Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning. Mach. Learn. 73, 243–272 (2008). https://doi.org/10.1007/s10994-007-5040-8

    Article  MATH  Google Scholar 

  3. Blanke, U., Schiele, B.: Remember and transfer what you have learned-recognizing composite activities based on activity spotting. In: International Symposium on Wearable Computers, pp. 1–8. IEEE (2010)

    Google Scholar 

  4. Chen, Y., Qin, X., Wang, J., Yu, C., Gao, W.: FedHealth: a federated transfer learning framework for wearable healthcare. IEEE Intell. Syst. 35(4), 83–93 (2020)

    Article  Google Scholar 

  5. Daga, H., Nicholson, P.K., Gavrilovska, A., Lugones, D.: Cartel: a system for collaborative transfer learning at the edge. In: Proceedings of the ACM Symposium on Cloud Computing, pp. 25–37. ACM (2019)

    Google Scholar 

  6. Davis, J., Domingos, P.: Deep transfer via second-order Markov logic. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 217–224. ACM (2009)

    Google Scholar 

  7. Evgeniou, T., Pontil, M.: Regularized multi-task learning. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 109–117. ACM (2004)

    Google Scholar 

  8. Farhadi, A., Forsyth, D., White, R.: Transfer learning in sign language. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

    Google Scholar 

  9. Global Forecast: Cisco visual networking index: global mobile data traffic forecast. Update 2017–2022 (2019)

    Google Scholar 

  10. Hsieh, K., et al.: Gaia: geo-distributed machine learning approaching LAN speeds. In: 14th USENIX Symposium on Networked Systems Design and Implementation, pp. 629–647. USENIX (2017)

    Google Scholar 

  11. Jebara, T.: Multi-task feature and kernel selection for SVMs. In: Proceedings of the 21st International Conference on Machine Learning, p. 55. ACM (2004)

    Google Scholar 

  12. Jiang, J., Zhai, C.: Instance weighting for domain adaptation in NLP. In: Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pp. 264–271. ACL (2007)

    Google Scholar 

  13. Ju, C., Gao, D., Mane, R., Tan, B., Liu, Y., Guan, C.: Federated transfer learning for EEG signal classification. In: 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society, EMBC 2020, Montreal, QC, Canada, 20–24 July 2020, pp. 3040–3045. IEEE (2020). https://doi.org/10.1109/EMBC44109.2020.9175344

  14. Kang, Y., et al.: Neurosurgeon: collaborative intelligence between the cloud and mobile edge. ACM SIGARCH Comput. Archit. News 45, 615–629 (2017)

    Article  Google Scholar 

  15. Kearns, M.J., Vazirani, U.V., Vazirani, U.: An Introduction to Computational Learning Theory. MIT Press, Cambridge (1994)

    Book  Google Scholar 

  16. Lawrence, N.D., Platt, J.C.: Learning to learn with the informative vector machine. In: Proceedings of the 21st International Conference on Machine Learning, p. 65. ACM (2004)

    Google Scholar 

  17. Lee, S.I., Chatalbashev, V., Vickrey, D., Koller, D.: Learning a meta-level prior for feature relevance from multiple related tasks. In: Proceedings of the 24th International Conference on Machine Learning, pp. 489–496. ACM (2007)

    Google Scholar 

  18. Liao, X., Xue, Y., Carin, L.: Logistic regression with an auxiliary data source. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 505–512. ACM (2005)

    Google Scholar 

  19. Luo, C., et al.: AIoT bench: towards comprehensive benchmarking mobile and embedded device intelligence. In: Zheng, C., Zhan, J. (eds.) Bench 2018. LNCS, vol. 11459, pp. 31–35. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32813-9_4

    Chapter  Google Scholar 

  20. Ma, Z., et al.: PMKT: privacy-preserving multi-party knowledge transfer for financial market forecasting. Future Gener. Comput. Syst. 106, 545–558 (2020)

    Article  Google Scholar 

  21. Ma, Z., et al.: PMKT: privacy-preserving multi-party knowledge transfer for financial market forecasting. Future Gener. Comput. Syst. 106, 545–558 (2020). https://doi.org/10.1016/j.future.2020.01.007

    Article  Google Scholar 

  22. Mihalkova, L., Huynh, T., Mooney, R.J.: Mapping and revising Markov logic networks for transfer learning. In: AAAI, vol. 7, pp. 608–614. AAAI (2007)

    Google Scholar 

  23. Ogoe, H.A., Visweswaran, S., Lu, X., Gopalakrishnan, V.: Knowledge transfer via classification rules using functional mapping for integrative modeling of gene expression data. BMC Bioinform. 16, 1–15 (2015). https://doi.org/10.1186/s12859-015-0643-8

    Article  Google Scholar 

  24. Olmedilla, D.: Applying machine learning to ads integrity at Facebook. In: Proceedings of the 8th ACM Conference on Web Science, p. 4. ACM (2016)

    Google Scholar 

  25. Palatucci, M., Pomerleau, D., Hinton, G.E., Mitchell, T.M.: Zero-shot learning with semantic output codes. In: Advances in Neural Information Processing Systems, pp. 1410–1418. MIT Press (2009)

    Google Scholar 

  26. Perlich, C., Dalessandro, B., Raeder, T., Stitelman, O., Provost, F.: Machine learning for targeted display advertising: transfer learning in action. Mach. Learn. 95, 103–127 (2014). https://doi.org/10.1007/s10994-013-5375-2

    Article  MathSciNet  Google Scholar 

  27. Rababah, A.: Taylor theorem for planar curves. Proc. Am. Math. Soc. 119, 803–810 (1993)

    Article  MathSciNet  Google Scholar 

  28. Raina, R., Battle, A., Lee, H., Packer, B., Ng, A.Y.: Self-taught learning: transfer learning from unlabeled data. In: Proceedings of the 24th International Conference on Machine Learning, pp. 759–766. ACM (2007)

    Google Scholar 

  29. Schwaighofer, A., Tresp, V., Yu, K.: Learning gaussian process kernels via hierarchical Bayes. In: Advances in Neural Information Processing Systems, pp. 1209–1216. MIT Press (2005)

    Google Scholar 

  30. Sharma, S., Xing, C., Liu, Y., Kang, Y.: Secure and efficient federated transfer learning. In: 2019 IEEE International Conference on Big Data, pp. 2569–2576. IEEE (2019)

    Google Scholar 

  31. Torralba, A., Murphy, K.P., Freeman, W.T.: Sharing visual features for multiclass and multiview object detection. IEEE Trans. Pattern Anal. Mach. Intell. 29, 854–869 (2007)

    Article  Google Scholar 

  32. Wang, C., Mahadevan, S.: Manifold alignment using procrustes analysis. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1120–1127. ACM (2008)

    Google Scholar 

  33. Wang, W., Zheng, V.W., Yu, H., Miao, C.: A survey of zero-shot learning: settings, methods, and applications. ACM Trans. Intell. Syst. Technol. 10, 1–37 (2019)

    Google Scholar 

  34. Wu, P., Dietterich, T.G.: Improving SVM accuracy by training on auxiliary data sources. In: Proceedings of the 21st International Conference on Machine Learning, p. 110. ACM (2004)

    Google Scholar 

  35. Yang, H., He, H., Zhang, W., Cao, X.: FedSteg: a federated transfer learning framework for secure image steganalysis. IEEE Trans. Netw. Sci. Eng. 14, 78–88 (2018)

    Google Scholar 

Download references

Acknowledgment

This work was partly supported by the National Science Foundation of U.S. (2118083, 1912753, 1704287, 1741277, 1829674).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhipeng Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, H., Cai, Z., Li, W. (2021). Which Option Is a Better Way to Improve Transfer Learning Performance?. In: Du, DZ., Du, D., Wu, C., Xu, D. (eds) Combinatorial Optimization and Applications. COCOA 2021. Lecture Notes in Computer Science(), vol 13135. Springer, Cham. https://doi.org/10.1007/978-3-030-92681-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92681-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92680-9

  • Online ISBN: 978-3-030-92681-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics