Skip to main content

ReactiveBuild: Environment-Adaptive Self-Assembly of Amorphous Structures

  • Conference paper
  • First Online:
Distributed Autonomous Robotic Systems (DARS 2021)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 22))

Included in the following conference series:

Abstract

ReactiveBuild is an algorithm that enables robot swarms to build a variety of robust, amorphous, and environment-adaptive structures without pre-planning. Robots form structures by climbing their peers until either reaching a point closest to a goal location or until a neighboring robot recruits it for structural reinforcement. This contrasts with typical approaches to robotic self-assembly which generally seek to form some a priori, latticed shape. This paper demonstrates a simulated swarm of FireAnt3D robots using ReactiveBuild to form towers, chains, cantilevers, and bridges in three-dimensional environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, C., Theraulaz, G., Deneubourg, J.: Self-assemblages in insect societies. Insectes Sociaux 49(2), 99–110 (2002)

    Article  Google Scholar 

  2. Peleg, O., Peters, J., Salcedo, M., Mahadevan, L.: Collective mechanical adaptation of honeybee swarms. Nat. Phys. 14(12), 1193–1198 (2018)

    Article  Google Scholar 

  3. Gumbiner, B.: Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84(3), 345–357 (1996)

    Article  Google Scholar 

  4. Yim, M., et al.: Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robot. Autom. Mag. 14(1), 43–52 (2007)

    Article  MathSciNet  Google Scholar 

  5. Phoneko, S., Mlot, N., Monaenkova, D., Hu, D.L., Tovey, C.: Fire ants perpetually rebuild sinking towers. R. Soc. Open Sci. 4(7), 170475 (2017)

    Article  Google Scholar 

  6. Reid, C., et al.: Army ants dynamically adjust living bridges in response to a cost-benefit trade-off. Proc. Natl. Acad. Sci. 112(49), 15113–15118 (2015)

    Article  Google Scholar 

  7. Lioni, A., Sauwens, C., Theraulaz, G., Deneubourg, J.: Chain formation in Oecophylla longinoda. J. Insect Behav. 14(5), 679–696 (2001). https://doi.org/10.1023/A:1012283403138

    Article  Google Scholar 

  8. Werfel, J., Petersen, K., Nagpal, R.: Designing collective behavior in a termite-inspired robot construction team. Science 343(6172), 754–758 (2014)

    Article  Google Scholar 

  9. Gauci, M., Nagpal, R., Rubenstein, M.: Programmable self-disassembly for shape formation in large-scale robot collectives. In: Groß, R., et al. (eds.) Distributed Autonomous Robotic Systems. SPAR, vol. 6, pp. 573–586. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73008-0_40

    Chapter  Google Scholar 

  10. Tucci, T., et al.: A distributed self-assembly planning algorithm for modular robots. In: AAMAS (2018)

    Google Scholar 

  11. Stoy, K., Nagpal, R.: Self-repair through scale independent self-reconfiguration. In: International Conference on Intelligent Robots and Systems, pp. 2062–2067. IEEE (2004)

    Google Scholar 

  12. Malley, M., et al.: Eciton robotica: design and algorithms for an adaptive self-assembling soft robot collective. In: ICRA (2020)

    Google Scholar 

  13. Melenbrink, N., et al.: Using local force measurements to guide construction by distributed climbing robots. In: IROS (2017)

    Google Scholar 

  14. Mlot, N., et al.: Fire ants self-assemble into waterproof rafts to survive floods. Proc. Natl. Acad. Sci. 108(19), 7669–7673 (2011)

    Article  Google Scholar 

  15. Foster, P.C., et al.: Fire ants actively control spacing and orientation within self-assemblages. J. Exp. Biol. 217(12), 2089–2100 (2014)

    Article  Google Scholar 

  16. Jorgensen, M.W., et al.: Modular ATRON: modules for a self-reconfigurable robot. In: International Conference on Intelligent Robots and Systems, pp. 2068–2073. IEEE (2004)

    Google Scholar 

  17. Neubert, J., et al.: A robotic module for stochastic fluidic assembly of 3D self-reconfiguring structures. In: ICRA (2010)

    Google Scholar 

  18. Romanishin, J.W., et al.: 3D M-Blocks: self-reconfiguring robots capable of locomotion via pivoting in three dimensions. In: ICRA (2015)

    Google Scholar 

  19. Shimizu, M., et al.: Adaptive reconfiguration of a modular robot through heterogeneous inter-module connections. In: ICRA (2008)

    Google Scholar 

  20. Mondada, F., et al.: SWARM-BOT: a new distributed robotic concept. Auton. Robot. 17(2–3), 193–221 (2004). https://doi.org/10.1023/B:AURO.0000033972.50769.1c

    Article  Google Scholar 

  21. Swissler, P., Rubenstein, M.: FireAnt: a modular robot with full-body continuous docks. In: International Conference on Robotics and Automation, pp. 6812–6817. IEEE (2018)

    Google Scholar 

  22. Swissler, P., et al.: FireAnt3D: a 3D self-climbing robot towards non-latticed robotic self-assembly. In: International Conference on Intelligent Robots and Systems. IEEE (2020)

    Google Scholar 

  23. Espinosa, G., et al.: Using hardware specialization and hierarchy to simplify robotic swarms. In: International Conference on Robotics and Automation, pp. 7667–7673. IEEE (2018)

    Google Scholar 

  24. Fish, J., et al.: A First Course in Finite Elements. Wiley, West Sussex (2007)

    Book  Google Scholar 

  25. Ananthasayanam, B.: 3D truss analysis/user interface in FEM, MATLAB Central File Exchange. https://www.mathworks.com/matlabcentral/fileexchange/6832-3d-truss-analysis-user-interface-in-fem. Accessed 16 Oct 2020

  26. Swissler, P.: DARS_2021_Simulation_Videos. https://www.youtube.com/watch?v=YLXcj7RptPw. Accessed 11 Mar 2021

Download references

Acknowledgement

We thank Orion Kafka and Newell Moser for their help in strengthening the portions of this paper related to solid mechanics, and Thomas Bochynek for his help in strengthening the portions of this paper related to biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petras Swissler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Swissler, P., Rubenstein, M. (2022). ReactiveBuild: Environment-Adaptive Self-Assembly of Amorphous Structures. In: Matsuno, F., Azuma, Si., Yamamoto, M. (eds) Distributed Autonomous Robotic Systems. DARS 2021. Springer Proceedings in Advanced Robotics, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-92790-5_28

Download citation

Publish with us

Policies and ethics