Skip to main content

Byzantine Fault Tolerant Consensus for Lifelong and Online Multi-robot Pickup and Delivery

  • Conference paper
  • First Online:
Book cover Distributed Autonomous Robotic Systems (DARS 2021)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 22))

Included in the following conference series:

  • 729 Accesses

Abstract

Lifelong and online Multi-Agent Pickup and Delivery is a task and path planning problem in which tasks arrive over time. Real-world applications may require decentralized solutions that do not currently exist. This work proposes a decentralized and Byzantine fault tolerant algorithm building upon blockchain that is competitive against current distributed task and path planning algorithms. At every timestep agents can query the blockchain to receive their best available task pairing and propose a transaction that contains their planned path. This transaction is voted upon by the blockchain network nodes and is stored in the replicated state across all nodes or is rejected, forcing the agent to re-plan. We demonstrate our approach in simulation, showing that it gains the decentralized Byzantine fault tolerant consensus for planning, while remaining competitive against current solutions in its makespan and service time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afanasyev, I., Kolotov, A., Rezin, R., Danilov, K., Kashevnik, A., Jotsov, V.: Blockchain solutions for multi-agent robotic systems: related work and open questions. In: Proceedings of the 24th Conference of Open Innovations Association. FRUCT’24, Helsinki (2019)

    Google Scholar 

  2. Atlam, H.F., Alenezi, A., Alassafi, M.O., Wills, G.: Blockchain with internet of things: benefits, challenges, and future directions. Int. J. Intell. Syst. Appl. 10(6), 40–48 (2018)

    Google Scholar 

  3. Boyarski, E., et al.: ICBS: the improved conflict-based search algorithm for multi-agent pathfinding. In: Eighth Annual Symposium on Combinatorial Search. Citeseer (2015)

    Google Scholar 

  4. Buchman, E.: Tendermint: byzantine fault tolerance in the age of blockchains. Ph.D. thesis, The University of Guelph (2016)

    Google Scholar 

  5. Calvaresi, D., Dubovitskaya, A., Calbimonte, J.P., Taveter, K., Schumacher, M.: Multi-Agent systems and blockchain: results from a systematic literature review. In: Demazeau, Y., An, B., Bajo, J., Fernández-Caballero, A. (eds.) PAAMS 2018. LNCS (LNAI), vol. 10978, pp. 110–126. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94580-4_9

    Chapter  Google Scholar 

  6. Castello, E., Hardjono, T., Pentland, A.: Editorial: proceedings of the first symposium on blockchain and robotics, MIT media lab, 5 Dec. 2018. Ledger 4 (2019). https://doi.org/10.5195/ledger.2019.179

  7. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery. ACM Trans. Comput. Syst. 20(4), 398–461 (2002). https://doi.org/10.1145/571637.571640

    Article  Google Scholar 

  8. Cohen, L., Uras, T., Kumar, T.K.S., Xu, H., Ayanian, N., Koenig, S.: Improved solvers for bounded-suboptimal multi-agent path finding. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, pp. 3067–3074. AAAI Press (2016)

    Google Scholar 

  9. Goldenberg, M., et al.: Enhanced partial expansion a*. J. Artif. Int. Res. 50(1), 141–187 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Hönig, W., Kiesel, S., Tinka, A., Durham, J.W., Ayanian, N.: Conflict-based search with optimal task assignment. In: AAMAS (2018)

    Google Scholar 

  11. Khorshid, M., Holte, R., Sturtevant, N.R.: A polynomial-time algorithm for non-optimal multi-agent pathfinding. In: SOCS (2011)

    Google Scholar 

  12. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logist. Q. 2, 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  13. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982). https://doi.org/10.1145/357172.357176

    Article  MATH  Google Scholar 

  14. Laprie, J.-C.: The dependability approach to critical computing systems. In: Nichols, H., Simpson, D. (eds.) ESEC 1987. LNCS, vol. 289, pp. 231–243. Springer, Heidelberg (1987). https://doi.org/10.1007/BFb0022116

    Chapter  Google Scholar 

  15. Li, J., Tinka, A., Kiesel, S., Durham, J.W., Kumar, T.K.S., Koenig, S.: Lifelong multi-agent path finding in large-scale warehouses. In: AAMAS (2020)

    Google Scholar 

  16. Lopes, V., Alexandre, L.A.: An overview of blockchain integration with robotics and artificial intelligence. Ledger 4 (2019). https://doi.org/10.5195/ledger.2019.171

  17. Ma, H., Hönig, W., Kumar, T.K.S., Ayanian, N., Koenig, S.: Lifelong path planning with kinematic constraints for multi-agent pickup and delivery. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 7651–7658 (2019). https://doi.org/10.1609/aaai.v33i01.33017651

  18. Ma, H., Koenig, S.: Optimal target assignment and path finding for teams of agents. In: Proceedings of the 2016 International Conference on Autonomous Agents and; Multiagent Systems, AAMAS 2016, pp. 1144–1152. International Foundation for Autonomous Agents and Multiagent Systems, Richland (2016)

    Google Scholar 

  19. Ma, H., Koenig, S.: Ai buzzwords explained: multi-agent path finding (MAPF). AI Matters 3(3), 15–19 (2017). https://doi.org/10.1145/3137574.3137579

    Article  Google Scholar 

  20. Ma, H., Li, J., Kumar, T.S., Koenig, S.: Lifelong multi-agent path finding for online pickup and delivery tasks. In: Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2017, pp. 837–845. International Foundation for Autonomous Agents and Multiagent Systems, Richland (2017)

    Google Scholar 

  21. Morris, R., et al.: Planning, scheduling and monitoring for airport surface operations. In: AAAI Workshop: Planning for Hybrid Systems (2016)

    Google Scholar 

  22. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Cryptography Mailing list at https://metzdowd.com, March 2009

  23. Nguyen, V., Obermeier, P., Son, T.C., Schaub, T., Yeoh, W.: Generalized target assignment and path finding using answer set programming. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, IJCAI 2017, pp. 1216–1223. AAAI Press (2017)

    Google Scholar 

  24. Okumura, K., Machida, M., Défago, X., Tamura, Y.: Priority inheritance with backtracking for iterative multi-agent path finding. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pp. 535–542. International Joint Conference on Artificial Intelligence Organization, July 2019. https://doi.org/10.24963/ijcai.2019/76

  25. Sharon, G., Stern, R., Felner, A., Sturtevant, N.R.: Conflict-based search for optimal multi-agent pathfinding. Artif. Intell. 219, 40–66 (2015)

    Article  MathSciNet  Google Scholar 

  26. Silver, D.: Cooperative pathfinding. In: Proceedings of the First AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, AIIDE 2005, pp. 117–122. AAAI Press (2005)

    Google Scholar 

  27. Strobel, V., Castelló Ferrer, E., Dorigo, M.: Managing byzantine robots via blockchain technology in a swarm robotics collective decision making scenario. In: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2018, pp. 541–549. International Foundation for Autonomous Agents and Multiagent Systems, Richland (2018)

    Google Scholar 

  28. Surynek, P.: A novel approach to path planning for multiple robots in bi-connected graphs. In: 2009 IEEE International Conference on Robotics and Automation, pp. 3613–3619 (2009)

    Google Scholar 

  29. Čáp, M., Vokřínek, J., Kleiner, A.: Complete decentralized method for on-line multi-robot trajectory planning in well-formed infrastructures. In: Proceedings of the Twenty-Fifth International Conference on Automated Planning and Scheduling, ICAPS 2015, pp. 324–332. AAAI Press (2015)

    Google Scholar 

  30. Veloso, M., Biswas, J., Coltin, B., Rosenthal, S.: CoBots: robust symbiotic autonomous mobile service robots. In: Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI 2015, pp. 4423–4429. AAAI Press (2015)

    Google Scholar 

  31. Wang, K.H., Botea, A.: MAPP: a scalable multi-agent path planning algorithm with tractability and completeness guarantees. J. Artif. Intell. Res. (JAIR) 42, 55–90 (2011). https://doi.org/10.1613/jair.3370

    Article  MathSciNet  MATH  Google Scholar 

  32. Wilde, B.D., Mors, A., Witteveen, C.: Push and rotate: cooperative multi-agent path planning. In: AAMAS (2013)

    Google Scholar 

  33. Wurman, P., D’Andrea, R., Mountz, M.: Coordinating hundreds of cooperative, autonomous vehicles in warehouses. AI Mag. 29, 9–20 (2008)

    Google Scholar 

  34. Yu, J., LaValle, S.: Structure and intractability of optimal multi-robot path planning on graphs. In: AAAI (2013)

    Google Scholar 

Download references

Acknowledgement

This work was partially funded by ARL DCIST CRA W911NF-17-2-0181.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kegan Strawn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Strawn, K., Ayanian, N. (2022). Byzantine Fault Tolerant Consensus for Lifelong and Online Multi-robot Pickup and Delivery. In: Matsuno, F., Azuma, Si., Yamamoto, M. (eds) Distributed Autonomous Robotic Systems. DARS 2021. Springer Proceedings in Advanced Robotics, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-92790-5_3

Download citation

Publish with us

Policies and ethics