Abstract
Modeling of the smart grid architecture and its subsystems is a basic requirement for the success of these new technologies to address climate change effects. For a comprehensive research especially on effects of demand response systems, the integration of consumers’ decisions and interactions is essential. To model consumer participation in demand response programs this paper introduces an agent-based approach using the Consumat framework. The implementation in NetLogo provides high scalability and flexibility concerning input parameters and can easily interact with other simulation frameworks. It also forms a possible basis for an overall demand response consumer model. As a so-called toy model, simple correlations in this socio-technical scenario can already be explored.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
European Commission: COM(2014) 15 final: A policy framework for climate and energy in the period from 2020 to 2030, no. 2014, pp. 1–18 (2012)
Federal Energy Regulatory Commission: Assessment of Demand Response & Advanced Metering (2006)
Comstock, O.: Demand response saves electricity during times of high demand (2016). https://www.eia.gov/todayinenergy/detail.php?id=24872. Accessed 10 Jun 2020
Schwarzer, J., Kiefel, A., Engel, D.: The role of user interaction and acceptance in a cloud-based demand response model. In: IECON Proceedings (Industrial Electronics Conference) (2013)
Miller, M.Z., Griendling, K., Mavris, D.N.: Exploring human factors effects in the Smart Grid system of systems Demand Response. In: 2012 7th International Conference on System of Systems Engineering (SoSE), pp. 1–6 (2012)
Schwarzer, J., Engel, D., Lehnhoff, S.: Conceptual design of an agent-based socio-technical demand response consumer model. In: International Conference on Industrial Informatics, pp. 680–685 (2018)
Moglia, M., Cook, S., McGregor, J.: A review of agent-based modelling of technology diffusion with special reference to residential energy efficiency. Sustain. Cities Soc. 31, 173–182 (2017)
Bonabeau, E.: Agent-Based Modeling: Methods and Techniques for Simulating Human Systems, vol. 99, pp. 7280–7287 (2002)
Le Page, C., Bazile, D., Becu, N., Bommel, P.: Agent-based modelling and simulation applied to environmental management. In: Edmonds, B., Meyer, R. (Eds.) Simulating Social Complexity. Springer (2013)
Schwarzer, J., Engel, D.: Agent-based modeling of consumer participation in demand response programs with the consumat framework. In: Abstracts from the 9th DACH+ Conference on Energy Informatics, vol. 3, no. 27, pp. 13–15 (2020)
Jager, W., Janssen, M.A., Vlek, C.A.J.: Consumats in a commons dilemma: testing the behavioural rules of simulated consumers (1999)
Schaat, S., Jager, W., Dickert, S.: Psychologically plausible models in agent-based simulations of sustainable behavior. In: Alonso-Betanzos, A., Sánchez-Maroño, N., Fontenla-Romero, O., Polhill, J.G., Craig, T., Bajo, J., Corchado, J.M. (eds.) Agent-Based Modeling of Sustainable Behaviors, pp. 1–25. Springer International Publishing, Cham (2017)
Moglia, M., Podkalicka, A., Mcgregor, J.: An agent-based model of residential energy efficiency adoption. J. Artif. Soc. Soc. Simul. 21(3), 26 (2018)
Janssen, M.A., Jager, W.: Stimulating diffusion of green products—co-evolution between firms and consumers. J. Evol. Econ. 12(3), 283–306 (2002)
Vardakas, J.S., Zorba, N., Verikoukis, C.V.: A survey on demand response programs in smart grids: pricing methods and optimization algorithms. IEEE Commun. Surv. Tutorials 17(1), 152–178 (2015)
Kim, H., Kim, Y.J., Yang, K., Thottan, M.: Cloud-based demand response for smart grid: Architecture and distributed algorithms. In: 2011 IEEE International Conference on Smart Grid Communication, pp. 398–403 (2011)
Barbato, A., Capone, A., Carello, G., Delfanti, M., Merlo, M., Zaminga, A.: House energy demand optimization in single and multi-user scenarios. In: 2011 IEEE International Conference on Smart Grid Communication 2011, pp. 345–350 (2011)
Schwarzer, J., Engel, D.: Evaluation of data communication requirements for common demand response models. Proc. IEEE Int. Conf. Ind. Technol. (ICIT) 2015, 1311–1316 (2015)
Li, N., Chen, L., Low, S.H.: Optimal demand response based on utility maximization in power networks. IEEE Power Energy Society General Meeting (2011)
Seetharam, D., Bapat, T., Sengupta, N., Ghai, S.K., Shrinivasan, Y.B., Arya, V.: User-sensitive scheduling of home appliances, p. 43 (2011)
Adika, C.W.L.: Autonomous appliance scheduling for household energy management. IEEE Trans. Smart Grid 5(2), 673–682 (2014)
Barbato, A., Capone, A., Rodolfi, M., Tagliaferri, D.: Forecasting the usage of household appliances through power meter sensors for demand management in the smart grid. In: 2011 IEEE International Conference on Smart Grid Communication, pp. 404–409 (2011)
Bandini, S., Manzoni, S., Vizzari, G.: Agent based modeling and simulation: an informatics perspective. J. Artif. Soc. Soc. Simul. 12(4), 4 (2009)
Janssen, M., Ostrom, E.: Empirically based, agent-based models. Ecol. Soc. 11(2) (2006)
Balke, T., Gilbert, N.: How do agents make decisions ? A survey introduction : purpose & goals dimensions of comparison production rule systems, vol. 17, no. 2014, pp. 1–30 (2014)
Jager, W.: Modelling consumer behavior (2000)
Jager, W., Janssen, M.A., De Vries, H.J.M., De Greef, J., Vlek, C.A.J.: Behaviour in commons dilemmas: homo economicus and Homo psychologicus in an ecological-economic model. Ecol. Econ. 35(3), 357–379 (2000)
Jager, W., Janssen, M.: An updated conceptual framework for integrated modeling of human decision making: the Consumat II. ECCS 2012, 10 (2012)
Bravo, G., Vallino, E., Cerutti, A.K., Pairotti, M.B.: Alternative scenarios of green consumption in Italy: an empirically grounded model. Environ. Model. Softw. 47(256), 225–234 (2013)
Natalini, D., Bravo, G.: Encouraging sustainable transport choices in American households: results from an empirically grounded agent-based model. Sustain. 6(1), 50–69 (2014)
Müller, B., et al.: Describing human decisions in agent-based models—ODD+D, an extension of the ODD protocol. Environ. Model. Softw. 48, 37–48 (2013)
Schwarzer, J., Engel, D., Lehnhoff, S.: Conceptual design of an agent-based socio-technical demand response consumer model. In: Proceedings—IEEE 16th International Conference on Industrial Informatics, INDIN 2018 (2018)
Fredersdorf, F., Schwarzer, J., Engel, D.: Die Sicht der Endanwender im Smart Meter Datenschutz. Datenschutz und Datensicherheit - DuD 39(10), 682–686 (2015)
Janssen, M., Jager, W.: Lakeland 2 (2017). https://www.comses.net/codebases/5793/releases/1.0.0/%0A
Bergman, N., Haxeltine, A., Whitmarsh, L., Köhler, J., Schilperoord, M., Rotmans, J.: Modelling socio-technical transition patterns and pathways. J. Artif. Soc. Soc. Simul. 11(3), 7 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Schwarzer, J., Engel, D. (2022). Consumer Participation in Demand Response Programs: Development of a Consumat-Based Toy Model. In: Czupryna, M., Kamiński, B. (eds) Advances in Social Simulation. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-92843-8_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-92843-8_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92842-1
Online ISBN: 978-3-030-92843-8
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)