Skip to main content

Privately Querying Privacy: Privacy Estimation with Guaranteed Privacy of User and Database Party

  • Conference paper
  • First Online:
Algorithmic Aspects of Cloud Computing (ALGOCLOUD 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13084))

Included in the following conference series:

  • 166 Accesses

Abstract

Many fields of science and industry increasingly rely on the availability of individualized data that a given user may or may not be willing to share. Anonymization methods are often employed to improve user acceptance or are even required by law. However, the user has to rely on the technical competence and faithfulness of the database provider in implementing such measures, and even for honest and competent providers, sophisticated attacks on anonymity may still work. Consequently, many measures have been developed to allow users to estimate their anonymity in a given dataset; however, these measures are typically applied after a user has already offered his data to the provider. Here, we demonstrate how protocols based on cryptographic techniques such as secure multiparty computation and oblivious transfer can be employed to allow a user to query anonymization measures before revealing his own data without compromising the database privacy along the way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Please note that the multi-index \(\mathcal {I}_1\mathcal {I}_2\dots \mathcal {I}_n\) has to be converted into a scalar index for standard OT implementations. This can be achieved by, e.g., shifting each \(\mathcal {I}_j\) by \(\sum _{k=1}^{j-1}\lceil \log _2(\#h_k)\rceil \) bits before combining all into a single number.

  2. 2.

    Notice that it might, at first glance, seem reasonable to use a simpler and more efficient XOR instead of \(\lnot X^i_j \wedge X^i_{j\oplus _{\kappa }1}\); unfortunately, this does not work because it results in a value of 1 at the boundary of the last to the first interval and hence would reveal \(\rho _i\).

References

  1. Aggarwal, C.C.: On k-anonymity and the curse of dimensionality. In: Proceedings of the 31st International Conference on Very Large Data Bases, VLDB 2005, pp. 901–909. VLDB Endowment (2005). http://dl.acm.org/citation.cfm?id=1083592.1083696

  2. Aguilar Melchor, C., Barrier, J., Fousse, L., Killijian, M.O.: XPIR: private information retrieval for everyone. Proc. Privacy Enhan. Technol. 2016, 155–174 (2016)

    Google Scholar 

  3. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval. J. ACM 45(6), 965–981 (1998). https://doi.org/10.1145/293347.293350

    Article  MathSciNet  MATH  Google Scholar 

  4. Couteau, G.: New protocols for secure equality test and comparison. In: Proceedings of the Applied Cryptography and Network Security - 16th International Conference, ACNS 2018, Leuven, Belgium, July 2–4, 2018, pp. 303–320 (2018). https://doi.org/10.1007/978-3-319-93387-0_16

  5. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private set intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01957-9_8

    Chapter  Google Scholar 

  6. Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-protocol secure two-party computation. In: 22nd Annual Network and Distributed System Security Symposium (NDSS 2015). Internet Society, February 2015. http://tubiblio.ulb.tu-darmstadt.de/101761/

  7. Diggelmann, O., Cleis, M.N.: How the right to privacy became a human right. Hum. Rights Law Rev. 14(3), 441–458 (2014)

    Google Scholar 

  8. Alvim, M.S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., Smith, G.: Differential privacy (2020). https://doi.org/10.1007/978-3-319-96131-6_23

  9. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1

    Chapter  MATH  Google Scholar 

  10. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Commun. ACM 28(6), 637–647 (1985)

    Google Scholar 

  11. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_1

    Chapter  Google Scholar 

  12. Gymrek, M., McGuire, A.L., Golan, D., Halperin, E., Erlich, Y.: Identifying personal genomes by surname inference. Science 339(6117), 321–324 (2013)

    Google Scholar 

  13. Kiss, Á., Liu, J., Schneider, T., Asokan, N., Pinkas, B.: Private set intersection for unequal set sizes with mobile applications. In: Proceedings on Privacy Enhancing Technologies, vol. 4, pp. 177–197 (2017). https://doi.org/10.1515/popets-2017-0044

  14. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious PRF with applications to private set intersection. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS 2016, pp. 818–829. ACM, New York (2016). https://doi.org/10.1145/2976749.2978381, http://doi.acm.org/10.1145/2976749.2978381

  15. Kolesnikov, V., Sadeghi, A., Schneider, T.: Improved garbled circuit building blocks and applications to auctions and computing minima. In: Proceedings of the Cryptology and Network Security, 8th International Conference, CANS 2009, Kanazawa, Japan, 12–14 December 2009. pp. 1–20 (2009). https://doi.org/10.1007/978-3-642-10433-6_1

  16. Kotsogiannis, I., Tao, Y., He, X., Fanaeepour, M., Machanavajjhala, A., Hay, M., Miklau, G.: Privatesql: a differentially private SGL query engine. Proc. VLDB Endow. 12(11), 1371–1384 (2019)

    Article  Google Scholar 

  17. Li, N., Li, T., Venkatasubramanian, S.: t-Closeness: privacy beyond k-anonymity and l-diversity. In: 2007 IEEE 23rd International Conference on Data Engineering, pp. 106–115, April 2007. https://doi.org/10.1109/ICDE.2007.367856

  18. Li, S., Wang, D., Dai, Y.: Efficient secure multiparty computational geometry. Chin. J. Electr. 19(2), 324–328 (2010)

    Google Scholar 

  19. Liu, X., Li, S., Liu, J., Chen, X., Xu, G.: Secure multiparty computation of a comparison problem. SpringerPlus 5 (2016). https://doi.org/10.1186/s40064-016-3061-0, https://pdfs.semanticscholar.org/454f/f4c920ea2dd4ea74cc4ac3e7114ff016c582.pdf

  20. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity: privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1), March 2007. https://doi.org/10.1145/1217299.1217302, http://doi.acm.org/10.1145/1217299.1217302

  21. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Proceedings of the Thirty-first Annual ACM Symposium on Theory of Computing. STOC 1999, pp. 245–254. ACM, New York (1999). https://doi.org/10.1145/301250.301312, http://doi.acm.org/10.1145/301250.301312

  22. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets. In: 2008 IEEE Symposium on Security and Privacy (SP 2008), pp. 111–125, May 2008. https://doi.org/10.1109/SP.2008.33

  23. Rabin, M.O.: How to exchange secrets with oblivious transfer. Technical Report TR-81

    Google Scholar 

  24. Sweeney, L.: K-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(5), 557–570 (2002). https://doi.org/10.1142/S0218488502001648, http://dx.doi.org/10.1142/S0218488502001648

  25. Wagner, I.: Genomic privacy metrics: a systematic comparison. In: 2015 IEEE Security and Privacy Workshops, pp. 50–59, May 2015. https://doi.org/10.1109/SPW.2015.15

  26. Wagner, I., Eckhoff, D.: Technical privacy metrics: a systematic survey. ACM Comput. Surv. 51(3), 57:1–57:38 (2018). https://doi.org/10.1145/3168389, http://doi.acm.org/10.1145/3168389

  27. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science (SFCS 1982), pp. 160–164, November 1982. https://doi.org/10.1109/SFCS.1982.38

  28. Yao, A.C.: How to generate and exchange secrets. In: 27th Annual Symposium on Foundations of Computer Science (SFCS 1986), pp. 162–167, October 1986. https://doi.org/10.1109/SFCS.1986.25

Download references

Funding

This work was supported by the German Ministry of Education and Research through the DaSoMan-project [16KIS0804 to AKH].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ernst Althaus or Andreas Hildebrandt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hildebrandt, A.K., Althaus, E., Hildebrandt, A. (2021). Privately Querying Privacy: Privacy Estimation with Guaranteed Privacy of User and Database Party. In: D’Angelo, G., Michail, O. (eds) Algorithmic Aspects of Cloud Computing. ALGOCLOUD 2021. Lecture Notes in Computer Science(), vol 13084. Springer, Cham. https://doi.org/10.1007/978-3-030-93043-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93043-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93042-4

  • Online ISBN: 978-3-030-93043-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics