Skip to main content

Comparative Sharpness Evaluation for Mobile Phone Photos

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13069))

Included in the following conference series:

  • 2225 Accesses

Abstract

Mobile phones are the main source of a vast majority of digital photos nowadays. Photos taken by current mobile phones generally have fairly good visual quality without noticeable distortion. This progress benefits not only from the higher specification of camera sensor, but also the excellent imaging algorithm. Reliable and practical photo quality evaluation algorithm can guide the development of mobile phone photography to a higher level, which is also the key to this progress. Clearly, subjective photo quality assessment suffers from the drawbacks of productivity and reproducibility. Traditional objective image quality assessment algorithms can hardly discern the subtle quality difference between pictures photoed by different mobile phones. In this paper, we propose a comparative sharpness evaluation method based on an improved Siamese network with multilayer features for mobile phone photos. We employ Resnet-18 as the main feature extraction module. The features extracted from different layers of the two branches will be concatenated layer by layer and then passed to the final fully connected layer. The final output represents the sharpness comparison result of the two input pictures. Experimental results show that our sharpness evaluation algorithm achieves state-of-the-art performance on the SCPQD2020 database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 539–546. IEEE (2005)

    Google Scholar 

  2. Vu, C.T., T.D.P., Chandler, D.M.: S(3): A spectral and spatial measure of local perceived sharpness in natural images. IEEE Trans. Image Process. 21(3), 934–945 (2011)

    Google Scholar 

  3. DxOMark: How DXOMARK scores smartphone rear cameras - explaining DXOMARK Camera. https://www.dxomark.com/

  4. Ferzli, R., Karam, L.J.: A no-reference objective image sharpness metric based on the notion of just noticeable blur (JNB). IEEE Trans. Image Process. Pub. IEEE Sig. Proces. Soc. 18(4), 717–728 (2009)

    Article  MathSciNet  Google Scholar 

  5. Gu, K., Zhai, G., Lin, W., Yang, X., Zhang, W.: No-reference image sharpness assessment in autoregressive parameter space. IEEE Trans. Image Process. 24(10), 3218–3231 (2015)

    Article  MathSciNet  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. Larson, E.C., Chandler, D.M.: Most apparent distortion: full-reference image quality assessment and the role of strategy. J. Electron. Imaging 19(1), 011006 (2010)

    Google Scholar 

  8. Li, L., Lin, W., Wang, X., Yang, G., Bahrami, K., Kot, A.C.: No-reference image blur assessment based on discrete orthogonal moments. IEEE Trans. Cybern. 46(1), 39–50 (2015)

    Article  Google Scholar 

  9. Liu, X., van de Weijer, J., Bagdanov, A.D.: Rankiqa: Learning from rankings for no-reference image quality assessment. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1040–1049 (2017)

    Google Scholar 

  10. Lu, Q., et al.: Automatic region selection for objective sharpness assessment of mobile device photos. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 106–110. IEEE (2020)

    Google Scholar 

  11. Min, X., Zhai, G., Zhou, J., Farias, M.C., Bovik, A.C.: Study of subjective and objective quality assessment of audio-visual signals. IEEE Trans. Image Process. 29, 6054-6068 (2020)

    Google Scholar 

  12. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  Google Scholar 

  13. Narvekar, N.D., Karam, L.J.: A no-reference image blur metric based on the cumulative probability of blur detection (CPBD). IEEE Trans. Image Process. 20(9), 2678–2683 (2011)

    Article  MathSciNet  Google Scholar 

  14. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8026–8037 (2019)

    Google Scholar 

  15. Ponomarenko, N., Ieremeiev, O., Lukin, V., Egiazarian, K., et al.: Color image database TID2013: peculiarities and preliminary results. In: European Workshop on Visual Information Processing (EUVIP), pp. 106–111. IEEE (2013)

    Google Scholar 

  16. Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 15(11), 3440–3451 (2006)

    Article  Google Scholar 

  17. Vu, P.V., Chandler, D.M.: A fast wavelet-based algorithm for global and local image sharpness estimation. IEEE Sig. Process. Lett. 19(7), 423–426 (2012)

    Article  Google Scholar 

  18. Xu, S., Yan, J., Hu, M., Li, Q., Zhou, J.: Quality assessment model for smartphone camera photo based on inception network with residual module and batch normalization. In: 2020 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 1–6. IEEE (2020)

    Google Scholar 

  19. Yao, C., Lu, Y., Liu, H., Hu, M., Li, Q.: Convolutional neural networks based on residual block for no-reference image quality assessment of smartphone camera images. In: 2020 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 1–6. IEEE (2020)

    Google Scholar 

  20. Ying, Z., Pan, D., Shi, P.: Quality difference ranking model for smartphone camera photo quality assessment. In: 2020 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 1–6. IEEE (2020)

    Google Scholar 

  21. Yuan, Z., Qi, Y., Hu, M., Li, Q.: Opinion-unaware no-reference image quality assessment of smartphone camera images based on aesthetics and human perception. In: 2020 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 1–6. IEEE (2020)

    Google Scholar 

  22. Zhai, G., Kaup, A.: Comparative image quality assessment using free energy minimization. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1884–1888. IEEE (2013)

    Google Scholar 

  23. Zhai, G., Min, X.: Perceptual image quality assessment: a survey. Sci. China Inf. Sci. 63(11), 1–52 (2020). https://doi.org/10.1007/s11432-019-2757-1

    Article  Google Scholar 

  24. Zhai, G., Zhu, Y., Min, X.: Comparative perceptual assessment of visual signals using free energy features. IEEE Trans. Multimedia 23, 3700–3713 (2020)

    Google Scholar 

  25. Zhou, Y., Wang, Y., Kong, Y., Hu, M.: Multi-indicator image quality assessment of smartphone camera based on human subjective behavior and perception. In: 2020 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 1–6. IEEE (2020)

    Google Scholar 

  26. Zhu, W., et al.: A multiple attributes image quality database for smartphone camera photo quality assessment. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 2990–2994 (2020). https://doi.org/10.1109/ICIP40778.2020.9191104

  27. Zhu, W., Zhai, G., Hu, M., Liu, J., Yang, X.: Arrow’s impossibility theorem inspired subjective image quality assessment approach. Sig. Process. 145, 193–201 (2018)

    Article  Google Scholar 

  28. Zhu, Y., Zhai, G., Ke, G., Che, Z.: No-reference image quality assessment for photographic images of consumer device. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangtao Zhai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, Q., Zhai, G., Zhu, Y., Min, X., Wang, T., Zhang, XP. (2021). Comparative Sharpness Evaluation for Mobile Phone Photos. In: Fang, L., Chen, Y., Zhai, G., Wang, J., Wang, R., Dong, W. (eds) Artificial Intelligence. CICAI 2021. Lecture Notes in Computer Science(), vol 13069. Springer, Cham. https://doi.org/10.1007/978-3-030-93046-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93046-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93045-5

  • Online ISBN: 978-3-030-93046-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics