Skip to main content

Diagnosis of Childhood Autism Using Multi-modal Functional Connectivity via Dynamic Hypergraph Learning

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13069))

Included in the following conference series:

Abstract

Characterizations of atypical patterns of static functional connectivity (FC) have been widely observed in individuals with autism spectrum disorder (ASD). In recent years, some studies have hypothesized the stationary assumption and revealed the relevance of the time-varying anomaly in FC to the autistic traits. While most existing work focus on exploring properties of static FC (sFC) and dynamic FC (dFC) separately, little efforts have been made to investigate the correlation among these two modalities and combine their information to diagnose ASD. In this paper, we propose a multi-modal dynamic hypergraph learning framework for childhood autism diagnosis using both sFCs and dFCs. We collect a childhood ASD dataset including 91 ASD patients and 76 healthy controls (HC). After extracting features from the sFC and dFC for each subject, two hypergraphs are constructed to represent the complex correlation among different subjects under static and dynamic modalities, respectively. To further moderate inappropriate or even wrong connections, a multi-modal dynamic hypergraph learning process is conducted to jointly learn the data correlation and predict the subject labels, i.e., HC or ASD. Experimental results demonstrate that our method can achieve 75.6% accuracy with 5-fold cross validation and consistently outperform the conventional classifiers for autism diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.fil.ion.ucl.ac.uk/spm/software/spm12/.

  2. 2.

    https://www.nitrc.org/projects/gretna/.

References

  1. Allen, G., Courchesne, E.: Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: an fMRI study of autism. Am. J. Psychiatry 160(2), 262–273 (2003)

    Article  Google Scholar 

  2. Amaral, D.G., Schumann, C.M., Nordahl, C.W.: Neuroanatomy of autism. Trends Neurosci. 31(3), 137–145 (2008)

    Article  Google Scholar 

  3. Boddaert, N., Chabane, N., Gervais, H., Good, C., Bourgeois, M., Plumet, M., et al.: Superior temporal sulcus anatomical abnormalities in childhood autism: a voxel-based morphometry MRI study. Neuroimage 23(1), 364–369 (2004)

    Article  Google Scholar 

  4. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)

  5. Cerliani, L., Mennes, M., Thomas, R.M., Di Martino, A., Thioux, M., Keysers, C.: Increased functional connectivity between subcortical and cortical resting-state networks in autism spectrum disorder. JAMA Psychiat. 72(8), 767–777 (2015)

    Article  Google Scholar 

  6. Chen, H., Nomi, J.S., Uddin, L.Q., Duan, X., Chen, H.: Intrinsic functional connectivity variance and state-specific under-connectivity in autism. Hum. Brain Mapp. 38(11), 5740–5755 (2017)

    Article  Google Scholar 

  7. Chen, X., Zhang, H., Gao, Y., Wee, C.Y., Li, G., Shen, D.: High-order resting-state functional connectivity network for MCI classification. Hum. Brain Mapp. 37(9), 3282–3296 (2016)

    Article  Google Scholar 

  8. Demirtas, M., et al.: Dynamic functional connectivity reveals altered variability in functional connectivity among patients with major depressive disorder. Hum. Brain Mapp. 37(8), 2918–2930 (2016)

    Google Scholar 

  9. Falahpour, M., Thompson, W.K., Abbott, A.E., Jahedi, A., Mulvey, M.E., et al.: Underconnected, but not broken? dynamic functional connectivity MRI shows underconnectivity in autism is linked to increased intra-individual variability across time. Brain Connectivity 6(5), 403–414 (2016)

    Article  Google Scholar 

  10. Gao, Y., Wang, M., Tao, D., Ji, R., Dai, Q.: 3-D object retrieval and recognition with hypergraph analysis. IEEE Trans. Image Process. 21(9), 4290–4303 (2012)

    Article  MathSciNet  Google Scholar 

  11. von dem Hagen, E.A., Stoyanova, R.S., Baron-Cohen, S., Calder, A.J.: Reduced functional connectivity within and between ‘social’ resting state networks in autism spectrum conditions. Soc. Cogn. Affect. Neurosci. 8(6), 694–701 (2012)

    Article  Google Scholar 

  12. Huang, Y., Liu, Q., Zhang, S., Metaxas, D.N.: Image retrieval via probabilistic hypergraph ranking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3376–3383 (2010)

    Google Scholar 

  13. Jung, M., et al.: Default mode network in young male adults with autism spectrum disorder: relationship with autism spectrum traits. Molecular Autism 5(1), 35 (2014)

    Article  Google Scholar 

  14. Keown, C.L., Shih, P., Nair, A., Peterson, N., Mulvey, M.E., Müller, R.A.: Local functional overconnectivity in posterior brain regions is associated with symptom severity in autism spectrum disorders. Cell Rep. 5(3), 567–572 (2013)

    Article  Google Scholar 

  15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  16. Ktena, S.I., et al.: Metric learning with spectral graph convolutions on brain connectivity networks. Neuroimage 169, 431–442 (2018)

    Article  Google Scholar 

  17. Laufs, H., Rodionov, R., Thornton, R., Duncan, J.S., Lemieux, L., Tagliazucchi, E.: Altered fMRI connectivity dynamics in temporal lobe epilepsy might explain seizure semiology. Front. Neurol. 5, 175 (2014)

    Article  Google Scholar 

  18. Monk, C.S., et al.: Abnormalities of intrinsic functional connectivity in autism spectrum disorders. Neuroimage 47(2), 764–772 (2009)

    Article  Google Scholar 

  19. Parisot, S., et al.: Spectral graph convolutions for population-based disease prediction. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 177–185. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_21

    Chapter  Google Scholar 

  20. Parisot, S., et al.: Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer’s disease. Med. Image Anal. 48, 117–130 (2018)

    Article  Google Scholar 

  21. Price, T., Wee, C.-Y., Gao, W., Shen, D.: Multiple-network classification of childhood autism using functional connectivity dynamics. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 177–184. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10443-0_23

    Chapter  Google Scholar 

  22. Radulescu, E., et al.: Abnormalities in Fronto-striatal connectivity within language networks relate to differences in grey-matter heterogeneity in Asperger syndrome. NeuroImage Clin. 2, 716–726 (2013)

    Google Scholar 

  23. Salmi, J., et al.: The brains of high functioning autistic individuals do not synchronize with those of others. NeuroImage Clin. 3, 489–497 (2013)

    Google Scholar 

  24. Supekar, K., et al.: Brain hyperconnectivity in children with autism and its links to social deficits. Cell Rep. 5(3), 738–747 (2013)

    Article  Google Scholar 

  25. Watanabe, T., Rees, G.: Brain network dynamics in high-functioning individuals with autism. Nat. Commun. 8, 16048 (2017)

    Article  Google Scholar 

  26. Wee, C.Y., Yap, P.T., Shen, D.: Diagnosis of autism spectrum disorders using temporally distinct resting-state functional connectivity networks. CNS Neurosci. Therapeutics 22(3), 212–9 (2016)

    Article  Google Scholar 

  27. Yerys, B.E., et al.: Default mode network segregation and social deficits in autism spectrum disorder: evidence from non-medicated children. NeuroImage Clin. 9, 223–232 (2015)

    Google Scholar 

  28. Yu, Q., et al.: Assessing dynamic brain graphs of time-varying connectivity in fMRI data: application to healthy controls and patients with schizophrenia. Neuroimage 107, 345–355 (2015)

    Article  Google Scholar 

  29. Zhang, Z., Lin, H., Gao, Y.: Dynamic hypergraph structure learning. In: Proceedings of International Joint Conference on Artificial Intelligence, pp. 3162–3169. International Joint Conferences on Artificial Intelligence Organization (2018)

    Google Scholar 

  30. Zhao, W., et al.: Learning to map social network users by unified manifold alignment on hypergraph. IEEE Trans. Neural Netw. Learn. Syst. 29(12), 5834–5846 (2018)

    Article  MathSciNet  Google Scholar 

  31. Zhu, L., Shen, J., Jin, H., Zheng, R., Xie, L.: Content-based visual landmark search via multimodal hypergraph learning. IEEE Trans. Cybern. 45(12), 2756–2769 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Funds of China (U1701262).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Liu, J., Li, B., Gao, Y. (2021). Diagnosis of Childhood Autism Using Multi-modal Functional Connectivity via Dynamic Hypergraph Learning. In: Fang, L., Chen, Y., Zhai, G., Wang, J., Wang, R., Dong, W. (eds) Artificial Intelligence. CICAI 2021. Lecture Notes in Computer Science(), vol 13069. Springer, Cham. https://doi.org/10.1007/978-3-030-93046-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93046-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93045-5

  • Online ISBN: 978-3-030-93046-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics