Skip to main content

GBCI: Adaptive Frequency Band Learning for Gender Recognition in Brain-Computer Interfaces

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13069))

Included in the following conference series:

  • 2031 Accesses

Abstract

In recent years, with the rapid development of brain-computer interface (BCI) technology, various applications based on BCI have generated significant interest. A motivating application of BCI is predicting human gender by electroencephalogram (EEG) analysis. However, most of the recent researches only identify the gender of EEG in the resting state. In real-life practice, it is difficult for the subjects to be at a full resting state when it mixes with motor imagery (MI). Therefore, we acquired two kinds of EEG activities data including 9 subjects (5 males and 4 females) with two state (i.e., resting state and MI) based on Chinese sign language. In this paper, to recognize gender form two state, an improved adaptive variational mode decomposition with long short term memory (AVMD-LSTM) network is developed to construct a hybrid state learning framework. Besides, the sample entropy (SE) is employed to select the channel of EEG data as the input of AVMD-LSTM. The recognition accuracy of gender classification was 89.21\(\%\). Comparing with the task of complete resting state, the model is validated with more robustness. Furthermore, the proposed algorithm has many applications, including biometrics, healthcare, and online entertainment advertising.

Supported by the National Natural Science Foundation of China under Grant 61876082, 61861130366, 61732006 and National Key R&D Program of China under Grant 2018YFC2001600, 2018YFC2001602. Thanks to Chinese sign language teacher Yinling Du for providing guidance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gao, S.K., Wang, Y.J., Gao, X.R., et al.: Visual and auditory brain-computer interfaces. IEEE Trans. Biomed. Eng. 61(5), 1436–1447 (2014)

    Google Scholar 

  2. Lu, N., Li, T., Ren, X., Miao, H.: A deep learning scheme for motor imagery classification based on restricted boltzmann machines. IEEE Trans. Neural Syst. Rehab. Eng .25(6), 566–576 (2017)

    Google Scholar 

  3. Kauhanen, L., Nykopp, T., Lehtonen, J., et al.: EEG and MEG brain-computer interface for tetraplegic patients. IEEE Trans. Neural Syst. Rehab. Eng. 14(2), 190–193 (2006)

    Google Scholar 

  4. Mestais, C.S., Charvet, G., Sauter-Starace, F., Foerster, M., Ratel, D., Benabid, A.L.: WIMAGINE: wireless 64-Channel ECoG recording implant for long term clinical applications. IEEE Trans. Neural Syst. Rehab. Eng. 23(1), 10–21 (2015)

    Google Scholar 

  5. Yuan, K., et al.: Interhemispheric functional reorganization and its structural base after BCI-Guided upper-limb training in chronic stroke. IEEE Trans. Neural Syst. Rehab. Eng. 28(11), 2525–2536 (2020)

    Google Scholar 

  6. Han, C.-H., Müller, K.-R., Hwang, H.-J.: Enhanced performance of a brain switch by simultaneous use of EEG and NIRS Data for asynchronous brain-computer interface. IEEE Trans .Neural Syst. Rehab. Eng. 28(10), 2102–2112 (2020)

    Google Scholar 

  7. Li, J., Yu, Z.L., Gu, Z., Wu, W., Li, Y., Jin, L.: A hybrid network for ERP detection and analysis based on restricted Boltzmann machine. IEEE Trans. Neural Syst. Rehab. Eng. 26(3), 563–572 (2018)

    Google Scholar 

  8. Nakanishi, M., Wang, Y., Chen, X., et al.: Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis. IEEE Trans. Biomed. Eng. 65(1), 104–112 (2018)

    Google Scholar 

  9. He, B., Baxter, B., Edelman, B.J., Cline, C.C., Ye, W.W.: Noninvasive brain-computer interfaces based on sensorimotor rhythms. Proceed. IEEE 103(6), 907–925 (2015)

    Google Scholar 

  10. Luders, E., et al.: Gender differences in cortical complexity. Nat. Neurosci. 7(8), 799–800 (2004)

    Google Scholar 

  11. Chao, Z., et al.: Functional connectivity predicts gender: evidence for gender differences in resting brain connectivity. Human Brain Map. 39(3), 1–11 (2018)

    Google Scholar 

  12. Ritchie, S.J., et al.: Sex differences in the adult human brain evidence from 5216 UK biobank participants. Cerebr. Cortex 28(8), 2959–2975 (2018)

    Google Scholar 

  13. Ruigrok, A.N.V., et al.: A meta analysis of sex differences in human brain structure. Neurosci. Biobehav. Rev. 39(1), 34–50 (2014)

    Google Scholar 

  14. Ingalhalikar, M., Smith, A., Parker, D., et al.: Sex differences in the structural connectome of the human brain. Proceed. National Acad. Sci. United States Am. 2(111), 823–828 (2014

    Google Scholar 

  15. Jung, M., Choi, M., Lee, T.R.: Determinants of public phobia about infectious diseases in south korea effect of health communication and gender difference. Asia Pac. J. Public Health 27(2), 1–12 (2015)

    Google Scholar 

  16. Kwon, N., Song, H.: Personality traits gender and information competency among college students. Malaysian J. Library Inf. Sci. 16(1), 87–107 (2011)

    Google Scholar 

  17. Eidinger, E., et al.: Age and gender estimation of unfiltered faces. IEEE Trans. Inf. Forensics Secur. 9(12), 2170–2179 (2014)

    Google Scholar 

  18. Volosyak, I., Valbuena, D., Luth, T., Malechka, T., Graser, A.: BCI demographics II how many (and What Kinds of) people can use a high-frequen cy SSVEP BCI. IEEE Trans. Neural Syst. Rehab. Eng. 19(3), 232–239 (2011)

    Google Scholar 

  19. Raghavan, P., et al.: The role of robotic path assistance and weight support in facilitating 3D movements in individuals with oststroke Hemiparesis. Neurorehab. Neural Repair 34(2), 1–12 (2020)

    Google Scholar 

  20. Sun, Y., Zhang, M., Sun, Z., et al.: Demographic analysis from biometric data: achievements, challenges, and new frontiers. IEEE Trans. Pattern Anal. Machine Intell. 40(2), 332–351 (2018)

    Google Scholar 

  21. Hu, J.: An approach to EEG-based gender recognition using entropy measurement methods. Knowl. Based Syst. 140(15), 134–141 (2018)

    Google Scholar 

  22. Wang, P., Hu, J.: A hybrid model for EEG-based gender recognition. Cognit. Neurodynam. 13(6), 541–554 (2019). https://doi.org/10.1007/s11571-019-09543-y

  23. Kaushik, P., et al.: EEG-Based age and gender prediction using deep BLSTM-LSTM network model. IEEE Sensors J. 19(7), 2634–2641 (2019)

    Google Scholar 

  24. Catrambone, V., Greco, A., Averta, G., Bianchi, M., Valenza, G., Scilingo, E.P.: Predicting object-mediated gestures from brain activity: an EEG study on gender differences. IEEE Trans. Neural Syst. Rehab. Eng. 27(3), 411–418 (2019)

    Google Scholar 

  25. Kaur, B., Singh, D., Roy, P.P.: Age and gender classification using brain-computer interface. Neural Comput. Appl. 31, 5887–5900 (2019)

    Google Scholar 

  26. Cao, Z., Lin, C.-T.: Inherent fuzzy entropy for the improvement of EEG complexity evaluation. IEEE Trans. Fuzzy Syst. 26, 1032–1035 (2018)

    Article  Google Scholar 

  27. Subasi, A., Jukic, S., Kevric, J.: Comparison of EMD, DWT and WPD for the localization of Epileptogenic Foci using random forest classifier. Measurement 146, 846–855 (2019)

    Google Scholar 

  28. Dora, C., Biswal, P.K.: An improved algorithm for efficient ocular artifact suppression from frontal EEG electrodes using VMD. Biocybern. Biomed. Eng. 40(1), 148–161 (2019)

    Google Scholar 

  29. Xia, L., et al.: An improved shuffled frog-leaping algorithm with extremal optimisation for continuous optimisation. Inf. Sci. 192, 143–151 (2012)

    Google Scholar 

  30. Hu, B., et al.: Feature selection for optimized high-dimensional biomedical data using an improved shuffled frog leaping algorithm. IEEE/ACM Trans. Comput. Biol. Bioinf. 15(6), 1765–1773 (2018)

    Google Scholar 

  31. Fan, et al.: Self-adaptive kernel K-means algorithm based on the shuffled frog leaping algorithm. Soft Comput. Fusion Foundations Methodol. Appl. 22(3), 861–872 (2018)

    Google Scholar 

  32. Rajamohana, S.P., Umamaheswari, K.: Hybrid approach of improved binary particle swarm optimization and shuffled frog leaping for feature selection. Comput. Electric. Eng. 67, 497-508 (2018)

    Google Scholar 

  33. Huang, C., et al.: A new pulse coupled neural network (PCNN) for brain medical image fusion empowered by shuffled frog leaping algorithm. Front. Neurosci. 13, 210 (2019)

    Google Scholar 

  34. Rehman, N.U., Aftab, H.: Multivariate variational mode decomposition. IEEE Trans. Signal Process. 67(23), 6039–6052 (2019)

    Google Scholar 

  35. Taran, S., Bajaj, V.: Clustering variational mode decomposition for identification of focal EEG signals. IEEE Sensors Lett 2(4), 1–4 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoqiang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, P., Zhou, Y., Li, Z., Zhang, D. (2021). GBCI: Adaptive Frequency Band Learning for Gender Recognition in Brain-Computer Interfaces. In: Fang, L., Chen, Y., Zhai, G., Wang, J., Wang, R., Dong, W. (eds) Artificial Intelligence. CICAI 2021. Lecture Notes in Computer Science(), vol 13069. Springer, Cham. https://doi.org/10.1007/978-3-030-93046-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93046-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93045-5

  • Online ISBN: 978-3-030-93046-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics