Skip to main content

Brightening the Low-Light Images via a Dual Guided Network

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13069))

Included in the following conference series:

  • 2300 Accesses

Abstract

Illumination estimation based on the retinex theory is quite challenging in low-light image enhancement, and thus reflectance adjustment is necessary after illumination removal. In this paper, we propose a dual guided network to address low-light image enhancement. To be concrete, in the first stage of the method, a depth guide is introduced to constrain illumination. Based on their similarity of the smoothness, the accuracy of illumination estimation is improved. For the second stage, an attention guide is injected towards reflectance adjustment to obtain the final enhanced result. Through the guide of the attention module, details and color information lost when removing illumination can be well supplemented. Extensive ablation studies show the effectiveness and rationality of the proposed depth guide and attention guide. Qualitative and quantitative experiments demonstrate our superiority against existing state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdullah-Al-Wadud, M., Kabir, M.H., Dewan, M.A.A., Chae, O.: A dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53(2), 593–600 (2007)

    Article  Google Scholar 

  2. Bychkovsky, V., Paris, S., Chan, E., Durand, F.: Learning photographic global tonal adjustment with a database of input/output image pairs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2011)

    Google Scholar 

  3. Cai, B., Xu, X., Guo, K., Jia, K., et al.: A joint intrinsic-extrinsic prior model for retinex. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4020–4029 (2017)

    Google Scholar 

  4. Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  5. Cheng, H., Shi, X.J.: A simple and effective histogram equalization approach to image enhancement. Digit. Signal Process. 14(2), 158–170 (2004)

    Article  Google Scholar 

  6. Land, E.H., McCann, J.J.: Lightness and retinex theory. J. Opt. Soc. Am. 61, 1–11 (1971)

    Article  Google Scholar 

  7. Fu, X., Zeng, D., Huang, Y., Zhang, X.P., Ding, X.: A weighted variational model for simultaneous reflectance and illumination estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  8. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  9. Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth prediction (2019)

    Google Scholar 

  10. Guo, C., Li, C., Guo, J., Loy, C.C., et al.: Zero-reference deep curve estimation for low-light image enhancement. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1780–1789 (2020)

    Google Scholar 

  11. Guo, X., Li, Y., Ling, H.: LIME: low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2017)

    Article  MathSciNet  Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)

  13. Ibrahim, H., Kong, N.S.P.: Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53(4), 1752–1758 (2007)

    Article  Google Scholar 

  14. Jiang, Y., Gong, X., Liu, D., Cheng, Y., et al.: EnlightenGAN: deep light enhancement without paired supervision. IEEE Trans. Image Process. 30, 2340–2349 (2021)

    Article  Google Scholar 

  15. Jobson, D.J., Rahman, Z., Woodell, G.A.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997)

    Article  Google Scholar 

  16. Jobson, D.J., Rahman, Z., Woodell, G.A.: Properties and performance of a center/surround retinex. IEEE Trans. Image Process. 6(3), 451–462 (1997)

    Article  Google Scholar 

  17. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  18. Li, L., Pan, J., Lai, W., Gao, C., et al.: Dynamic scene deblurring by depth guided model. IEEE Trans. Image Process. 29, 5273–5288 (2020)

    Article  Google Scholar 

  19. Li, M., Liu, J., Yang, W., Sun, X., Guo, Z.: Structure-revealing low-light image enhancement via robust retinex model. IEEE Trans. Image Process. 27(6), 2828–2841 (2018)

    Article  MathSciNet  Google Scholar 

  20. Liu, R., Cheng, S., He, Y., Fan, X., Lin, Z., Luo, Z.: On the convergence of learning-based iterative methods for nonconvex inverse problems. IEEE Trans. Pattern Anal. Mach. Intell. 42(12), 3027–3039 (2019)

    Article  Google Scholar 

  21. Liu, R., Fan, X., Hou, M., Jiang, Z., Luo, Z., Zhang, L.: Learning aggregated transmission propagation networks for haze removal and beyond. IEEE Trans. Neural Netw. Learn. Syst. 30(10), 2973–2986 (2018)

    Article  Google Scholar 

  22. Liu, R., Ma, L., Wang, Y., Zhang, L.: Learning converged propagations with deep prior ensemble for image enhancement. IEEE Trans. Image Process. 28(3), 1528–1543 (2019)

    Article  MathSciNet  Google Scholar 

  23. Liu, R., Ma, L., Zhang, J., Fan, X., Luo, Z.: Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  24. Liu, R., Ma, L., Zhang, Y., Fan, X., Luo, Z.: Underexposed image correction via hybrid priors navigated deep propagation. IEEE Trans. Neural Netw. Learn. Syst. (2021)

    Google Scholar 

  25. Ma, L., Liu, R., Zhang, J., Fan, X., Luo, Z.: Learning deep context-sensitive decomposition for low-light image enhancement. IEEE Trans. Neural Netw. Learn. Syst. (2021)

    Google Scholar 

  26. Paszke, A., Gross, S., Chintala, S., Chanan, G., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)

    Google Scholar 

  28. Stark, J.A.: Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Process. 9(5), 889–896 (2000)

    Article  Google Scholar 

  29. Thomas, G., Flores-Tapia, D., Pistorius, S.: Histogram specification: a fast and flexible method to process digital images. IEEE Trans. Instrum. Meas. 60(5), 1565–1578 (2011)

    Article  Google Scholar 

  30. Wang, R., Zhang, Q., Fu, C., Shen, X., et al.: Underexposed photo enhancement using deep illumination estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6849–6857 (2019)

    Google Scholar 

  31. Wei, C., Wang, W., Yang, W., Liu, J.: Deep retinex decomposition for low-light enhancement. In: British Machine Vision Conference, p. 155 (2018)

    Google Scholar 

  32. Yu, F., Koltun, V., Funkhouser, T.: Dilated residual networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  33. Zhang, J., Liu, R., Ma, L., Zhong, W., et al.: Principle-inspired multi-scale aggregation network for extremely low-light image enhancement. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2638–2642 (2020)

    Google Scholar 

  34. Zhang, Q., Yuan, G., Xiao, C., Zhu, L., Zheng, W.S.: High-quality exposure correction of underexposed photos. In: ACM Multimedia, pp. 582–590 (2018)

    Google Scholar 

  35. Zhang, Y., Zhang, J., Guo, X.: Kindling the darkness: a practical low-light image enhancer. In: ACM Multimedia, pp. 1632–1640

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (Nos. 61922019, 61733002 and 61672125), the LiaoNing Revitalization Talents Program (XLYC1807088) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Risheng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, J., Zhang, J., Liu, R., Xin, F. (2021). Brightening the Low-Light Images via a Dual Guided Network. In: Fang, L., Chen, Y., Zhai, G., Wang, J., Wang, R., Dong, W. (eds) Artificial Intelligence. CICAI 2021. Lecture Notes in Computer Science(), vol 13069. Springer, Cham. https://doi.org/10.1007/978-3-030-93046-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93046-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93045-5

  • Online ISBN: 978-3-030-93046-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics