Abstract
Illumination estimation based on the retinex theory is quite challenging in low-light image enhancement, and thus reflectance adjustment is necessary after illumination removal. In this paper, we propose a dual guided network to address low-light image enhancement. To be concrete, in the first stage of the method, a depth guide is introduced to constrain illumination. Based on their similarity of the smoothness, the accuracy of illumination estimation is improved. For the second stage, an attention guide is injected towards reflectance adjustment to obtain the final enhanced result. Through the guide of the attention module, details and color information lost when removing illumination can be well supplemented. Extensive ablation studies show the effectiveness and rationality of the proposed depth guide and attention guide. Qualitative and quantitative experiments demonstrate our superiority against existing state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdullah-Al-Wadud, M., Kabir, M.H., Dewan, M.A.A., Chae, O.: A dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53(2), 593–600 (2007)
Bychkovsky, V., Paris, S., Chan, E., Durand, F.: Learning photographic global tonal adjustment with a database of input/output image pairs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2011)
Cai, B., Xu, X., Guo, K., Jia, K., et al.: A joint intrinsic-extrinsic prior model for retinex. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4020–4029 (2017)
Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)
Cheng, H., Shi, X.J.: A simple and effective histogram equalization approach to image enhancement. Digit. Signal Process. 14(2), 158–170 (2004)
Land, E.H., McCann, J.J.: Lightness and retinex theory. J. Opt. Soc. Am. 61, 1–11 (1971)
Fu, X., Zeng, D., Huang, Y., Zhang, X.P., Ding, X.: A weighted variational model for simultaneous reflectance and illumination estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)
Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)
Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth prediction (2019)
Guo, C., Li, C., Guo, J., Loy, C.C., et al.: Zero-reference deep curve estimation for low-light image enhancement. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1780–1789 (2020)
Guo, X., Li, Y., Ling, H.: LIME: low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)
Ibrahim, H., Kong, N.S.P.: Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53(4), 1752–1758 (2007)
Jiang, Y., Gong, X., Liu, D., Cheng, Y., et al.: EnlightenGAN: deep light enhancement without paired supervision. IEEE Trans. Image Process. 30, 2340–2349 (2021)
Jobson, D.J., Rahman, Z., Woodell, G.A.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997)
Jobson, D.J., Rahman, Z., Woodell, G.A.: Properties and performance of a center/surround retinex. IEEE Trans. Image Process. 6(3), 451–462 (1997)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Li, L., Pan, J., Lai, W., Gao, C., et al.: Dynamic scene deblurring by depth guided model. IEEE Trans. Image Process. 29, 5273–5288 (2020)
Li, M., Liu, J., Yang, W., Sun, X., Guo, Z.: Structure-revealing low-light image enhancement via robust retinex model. IEEE Trans. Image Process. 27(6), 2828–2841 (2018)
Liu, R., Cheng, S., He, Y., Fan, X., Lin, Z., Luo, Z.: On the convergence of learning-based iterative methods for nonconvex inverse problems. IEEE Trans. Pattern Anal. Mach. Intell. 42(12), 3027–3039 (2019)
Liu, R., Fan, X., Hou, M., Jiang, Z., Luo, Z., Zhang, L.: Learning aggregated transmission propagation networks for haze removal and beyond. IEEE Trans. Neural Netw. Learn. Syst. 30(10), 2973–2986 (2018)
Liu, R., Ma, L., Wang, Y., Zhang, L.: Learning converged propagations with deep prior ensemble for image enhancement. IEEE Trans. Image Process. 28(3), 1528–1543 (2019)
Liu, R., Ma, L., Zhang, J., Fan, X., Luo, Z.: Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2021)
Liu, R., Ma, L., Zhang, Y., Fan, X., Luo, Z.: Underexposed image correction via hybrid priors navigated deep propagation. IEEE Trans. Neural Netw. Learn. Syst. (2021)
Ma, L., Liu, R., Zhang, J., Fan, X., Luo, Z.: Learning deep context-sensitive decomposition for low-light image enhancement. IEEE Trans. Neural Netw. Learn. Syst. (2021)
Paszke, A., Gross, S., Chintala, S., Chanan, G., et al.: Automatic differentiation in PyTorch (2017)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)
Stark, J.A.: Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Process. 9(5), 889–896 (2000)
Thomas, G., Flores-Tapia, D., Pistorius, S.: Histogram specification: a fast and flexible method to process digital images. IEEE Trans. Instrum. Meas. 60(5), 1565–1578 (2011)
Wang, R., Zhang, Q., Fu, C., Shen, X., et al.: Underexposed photo enhancement using deep illumination estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6849–6857 (2019)
Wei, C., Wang, W., Yang, W., Liu, J.: Deep retinex decomposition for low-light enhancement. In: British Machine Vision Conference, p. 155 (2018)
Yu, F., Koltun, V., Funkhouser, T.: Dilated residual networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)
Zhang, J., Liu, R., Ma, L., Zhong, W., et al.: Principle-inspired multi-scale aggregation network for extremely low-light image enhancement. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2638–2642 (2020)
Zhang, Q., Yuan, G., Xiao, C., Zhu, L., Zheng, W.S.: High-quality exposure correction of underexposed photos. In: ACM Multimedia, pp. 582–590 (2018)
Zhang, Y., Zhang, J., Guo, X.: Kindling the darkness: a practical low-light image enhancer. In: ACM Multimedia, pp. 1632–1640
Acknowledgments
This work was partially supported by the National Natural Science Foundation of China (Nos. 61922019, 61733002 and 61672125), the LiaoNing Revitalization Talents Program (XLYC1807088) and the Fundamental Research Funds for the Central Universities.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Sun, J., Zhang, J., Liu, R., Xin, F. (2021). Brightening the Low-Light Images via a Dual Guided Network. In: Fang, L., Chen, Y., Zhai, G., Wang, J., Wang, R., Dong, W. (eds) Artificial Intelligence. CICAI 2021. Lecture Notes in Computer Science(), vol 13069. Springer, Cham. https://doi.org/10.1007/978-3-030-93046-2_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-93046-2_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-93045-5
Online ISBN: 978-3-030-93046-2
eBook Packages: Computer ScienceComputer Science (R0)