Skip to main content

Learning Multi-scale Underexposure Image Correction

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2021)

Abstract

Images captured in low light conditions usually suffer from color distortion and poor visibility. Although remarkable success has been made, existing methods are still unstable when applied to various scenes. Therefore, we propose a robust deep multi-scale network for underexposure image correction. We construct Gaussian pyramid to explore the complementary and redundant information in different scales, and further extract, fuse illuminations with progressive fusion strategy across scales. This process not only boosts the end-to-end training but also promotes the cooperative representation. Moreover, fine-fused illuminations in multi-scales bridge the gap between the restoration knowledge of underexposure images and the perceptual quality preference to normal light images. Extensive experiments with advanced methods and ablation studies demonstrate our method outperforms others under a variety of metrics in terms of qualitative and quantitative comparison.

This work was supported in part by National Natural Science Foundation of China (NSFC) under Grant 61906029, the Fundamental Research Funds for the Central Universities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://sites.google.com/site/vonikakis/datasets.

References

  1. Shen, L., Yue, Z., Feng, F., et al.: MSR-net: low-light image enhancement using deep convolutional network. arXiv preprint arXiv:1711.02488 (2017)

  2. Guo, C., Li, C., Guo, J., et al.: Zero-reference deep curve estimation for low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1780–1789 (2020)

    Google Scholar 

  3. Wang, R., Zhang, Q., Fu, C.W., et al.: Underexposed photo enhancement using deep illumination estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6849–6857 (2019)

    Google Scholar 

  4. Pizer, S.M., Amburn, E.P., Austin, J.D., et al.: Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 39(3), 355–368 (1987)

    Article  Google Scholar 

  5. Ibrahim, H., Kong, N.S.P.: Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53(4), 1752–1758 (2007)

    Article  Google Scholar 

  6. Coltuc, D., Bolon, P., Chassery, J.M.: Exact histogram specification. IEEE Trans. Image Process. 15(5), 1143–1152 (2006)

    Article  Google Scholar 

  7. Pisano, E.D., Zong, S., Hemminger, B.M., et al.: Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms. J. Digit. Imaging 11(4), 193 (1998). https://doi.org/10.1007/BF03178082

    Article  Google Scholar 

  8. Land, E.H.: The retinex theory of color vision. Sci. Am. 237(6), 108–129 (1977)

    Article  Google Scholar 

  9. Jobson, D.J., Rahman, Z., Woodell, G.A.: Properties and performance of a center/surround retinex. IEEE Trans. Image Process. 6(3), 451–462 (1997)

    Article  Google Scholar 

  10. Fu, X., Zeng, D., Huang, Y., et al.: A weighted variational model for simultaneous reflectance and illumination estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2782–2790 (2016)

    Google Scholar 

  11. Cai, B., Xu, X., Guo, K., et al.: A joint intrinsic-extrinsic prior model for retinex. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4000–4009 (2017)

    Google Scholar 

  12. Lore, K.G., Akintayo, A., Sarkar, S.: LLNet: a deep autoencoder approach to natural low-light image enhancement. Pattern Recogn. 61, 650–662 (2017)

    Article  Google Scholar 

  13. Yan, Z., Zhang, H., Wang, B., et al.: Automatic photo adjustment using deep neural networks. ACM Trans. Graph. (TOG) 35(2), 1–15 (2016)

    Article  Google Scholar 

  14. Gharbi, M., Chen, J., Barron, J.T., et al.: Deep bilateral learning for real-time image enhancement. ACM Trans. Graph. (TOG) 36(4), 1–12 (2017)

    Article  Google Scholar 

  15. Cai, J., Gu, S., Zhang, L.: Learning a deep single image contrast enhancer from multi-exposure images. IEEE Trans. Image Process. 27(4), 2049–2062 (2018)

    Article  MathSciNet  Google Scholar 

  16. Jiang, Y., Gong, X., Liu, D., et al.: EnlightenGAN: deep light enhancement without paired supervision. IEEE Trans. Image Process. 30, 2340–2349 (2021)

    Article  Google Scholar 

  17. Wang, Z., Bovik, A.C., Sheikh, H.R., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  18. Bychkovsky, V., Paris, S., Chan, E., et al.: Learning photographic global tonal adjustment with a database of input/output image pairs. In: CVPR 2011, pp. 97–104. IEEE (2011)

    Google Scholar 

  19. Li, C., Guo, J., Porikli, F., et al.: LightenNet: a convolutional neural network for weakly illuminated image enhancement. Pattern Recogn. Lett. 104, 15–22 (2018)

    Article  Google Scholar 

  20. Zhang, Y., Zhang, J., Guo, X.: Kindling the darkness: a practical low-light image enhancer. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 1632–1640 (2019)

    Google Scholar 

  21. Guo, X., Li, Y., Ling, H.: LIME: low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2016)

    Article  MathSciNet  Google Scholar 

  22. Ma, K., Zeng, K., Wang, Z.: Perceptual quality assessment for multi-exposure image fusion. IEEE Trans. Image Process. 24(11), 3345–3356 (2015)

    Article  MathSciNet  Google Scholar 

  23. Wang, S., Zheng, J., Hu, H.M., et al.: Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans. Image Process. 22(9), 3538–3548 (2013)

    Article  Google Scholar 

  24. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind’’ image quality analyzer. IEEE Sig. Process. Lett. 20(3), 209–212 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhong, W., Zhang, X., Ma, L., Liu, R., Fan, X., Luo, Z. (2021). Learning Multi-scale Underexposure Image Correction. In: Fang, L., Chen, Y., Zhai, G., Wang, J., Wang, R., Dong, W. (eds) Artificial Intelligence. CICAI 2021. Lecture Notes in Computer Science(), vol 13069. Springer, Cham. https://doi.org/10.1007/978-3-030-93046-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93046-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93045-5

  • Online ISBN: 978-3-030-93046-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics