Abstract
Facial highlight removal techniques aim to remove the specular highlight from facial images, which could improve image quality and facilitate tasks, e.g., face recognition and reconstruction. However, previous learning-based techniques often fail on the in-the-wild images, as their models are often trained on paired synthetic or laboratory images due to the requirement on paired training data (images with and without highlight). In contrast to these methods, we propose a highlight removal network, which is pre-trained on a synthetic dataset but finetuned on the unpaired in-the-wild images. To achieve this, we propose a highlight mask guidance training technique, which enables Generative Adversarial Networks (GANs) to utilize in-the-wild images in training a highlight removal network. We have an observation that although almost all in-the-wild images contain some highlights on some regions, small patches without highlight can still provide useful information to guide the highlight removal procedure. This motivates us to train a region-based discriminator to distinguish highlight and non-highlight for a facial image and use it to finetune the generator. From the experiments, our technique achieves high-quality results compared with the state-of-the-art highlight removal techniques, especially on the in-the-wild images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bajcsy, R., Lee, S.W., Leonardis, A.: Detection of diffuse and specular interface reflections and inter-reflections by color image segmentation. Int. J. Comput. Vis. 17(3), 241–272 (1996)
Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 187–194 (1999)
Debevec, P., Hawkins, T., Tchou, C., Duiker, H.P., Sarokin, W., Sagar, M.: Acquiring the reflectance field of a human face. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 145–156 (2000)
Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using a Laplacian pyramid of adversarial networks. In: Advances in Neural Information Processing Systems, pp. 1486–1494 (2015)
Dosovitskiy, A., Springenberg, J.T., Brox, T.: Learning to generate chairs with convolutional neural networks. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1538–1546. IEEE (2015)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
Guo, J., Zhou, Z., Wang, L.: Single image highlight removal with a sparse and low-rank reflection model. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 282–298. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_17
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)
Kim, H., Jin, H., Hadap, S., Kweon, I.: Specular reflection separation using dark channel prior. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1460–1467. IEEE (2013)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)
Klinker, G.J., Shafer, S.A., Kanade, T.: The measurement of highlights in color images. Int. J. Comput. Vis. 2(1), 7–32 (1988)
Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: Deblurgan: blind motion deblurring using conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8183–8192 (2018)
Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)
Lee, C.H., Liu, Z., Wu, L., Luo, P.: MaskGAN: towards diverse and interactive facial image manipulation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020
Li, C., Lin, S., Zhou, K., Ikeuchi, K.: Specular highlight removal in facial images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3107–3116 (2017)
Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)
Perarnau, G., van de Weijer, J., Raducanu, B., Álvarez, J.M.: Invertible conditional gans for image editing. arXiv preprint arXiv:1611.06355 (2016)
Quan, L., Shum, H.Y., et al.: Highlight removal by illumination-constrained inpainting. In: Ninth IEEE International Conference on Computer Vision, Proceedings, pp. 164–169. IEEE (2003)
Ramamoorthi, R., Hanrahan, P.: A signal-processing framework for inverse rendering. In: Computer Graphics Proceedings, SIGGRAPH 2001 pp. 117–128 (2001)
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, pp. 2234–2242 (2016)
Shashua, A., Riklin-Raviv, T.: The quotient image: class-based re-rendering and recognition with varying illuminations. IEEE Trans. Pattern Anal. Mach. Intell. 23(2), 129–139 (2001)
Shen, H.L., Zheng, Z.H.: Real-time highlight removal using intensity ratio. Appl. Opt. 52(19), 4483–4493 (2013)
Shen, W., Liu, R.: Learning residual images for face attribute manipulation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1225–1233. IEEE (2017)
Shu, Z., Hadap, S., Shechtman, E., Sunkavalli, K., Paris, S., Samaras, D.: Portrait lighting transfer using a mass transport approach. ACM Trans. Graph. (TOG) 37(1), 2 (2018)
Taigman, Y., Polyak, A., Wolf, L.: Unsupervised cross-domain image generation. arXiv preprint arXiv:1611.02200 (2016)
Wang, Y., et al.: Face relighting from a single image under arbitrary unknown lighting conditions. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 1968–1984 (2008)
Wang, Z., Yu, X., Lu, M., Wang, Q., Qian, C., Xu, F.: Single image portrait relighting via explicit multiple reflectance channel modeling. ACM Trans. Graph. (TOG) 39(6), 1–13 (2020)
Yang, Q., Tang, J., Ahuja, N.: Efficient and robust specular highlight removal. IEEE Trans. Pattern Anal. Mach. Intell. 37(6), 1304–1311 (2015)
Yang, Q., Wang, S., Ahuja, N.: Real-time specular highlight removal using bilateral filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 87–100. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_7
Yi, R., Zhu, C., Tan, P., Lin, S.: Faces as lighting probes via unsupervised deep highlight extraction. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 317–333 (2018)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)
Zhu, T., Xia, S., Bian, Z., Lu, C.: Highlight removal in facial images. In: Peng, Y. (ed.) PRCV 2020. LNCS, vol. 12305, pp. 422–433. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60633-6_35
Acknowledgements
This work was supported by the National Key R&D Program of China 2018YFA0704000, the NSFC (No. 61822111, 61727808, 61671268, 62025108) and Beijing Natural Science Foundation (JQ19015, L182052).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, Z., Lu, M., Xu, F., Cao, X. (2021). In-the-Wild Facial Highlight Removal via Generative Adversarial Networks. In: Fang, L., Chen, Y., Zhai, G., Wang, J., Wang, R., Dong, W. (eds) Artificial Intelligence. CICAI 2021. Lecture Notes in Computer Science(), vol 13069. Springer, Cham. https://doi.org/10.1007/978-3-030-93046-2_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-93046-2_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-93045-5
Online ISBN: 978-3-030-93046-2
eBook Packages: Computer ScienceComputer Science (R0)