Skip to main content

Reduced-reference Perceptual Discrepancy Learning for Image Restoration Quality Assessment

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13069))

Included in the following conference series:

  • 2321 Accesses

Abstract

Image restoration has been receiving extensive attention owing to its widespread applications, and numerous restoration algorithms have been proposed. However, how to accurately evaluate the performances of image restoration algorithms remains largely unexplored. Current image restoration quality metrics make predictions solely based on the restored images without making full use of the original degraded image, which we believe also provides valuable information. For image restoration quality assessment, accurate measurement of the perceptual discrepancy between the degraded image and the restored images is crucial. Motivated by this, this paper presents a perceptual discrepancy learning (PDL) framework for image restoration quality assessment, where the original degraded image is utilized as reduced-reference to achieve reliable predictions. First, a large-scale paired image quality database with weakly annotated labels is built, based on which a prior quality model is trained using Siamese network. Then, based on the prior model, the degraded-restored image pairs (DRIPs) are further used to train the perceptual discrepancy prediction model in an end-to-end manner. Finally, the performances of image restoration algorithms can be obtained based on the predicted relative perceptual discrepancy (RPD) values directly. Experimental results on four image restoration quality databases demonstrate the advantage of the proposed metric over the state-of-the-arts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, K., Zuo, W.M., Chen, Y.J., Meng, D.Y., Zhang, L.: Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

  2. Pan, J.S., Sun, D.Q., Pfister, H., Yang, M.-H.: Deblurring images via dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 40(10), 2315–2328 (2018)

    Article  Google Scholar 

  3. Dong, C., Loy, C.C., He, K.M., Tang, X.O.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016)

    Article  Google Scholar 

  4. He, K.M., Sun, J., Tang, X.O.: Single image haze removal using dark channel prior. Int. Conf. Comput. Vis. Pattern Recognit. 33(12), 1956–1963 (2009)

    Google Scholar 

  5. Lai, W.S., Huang, J.B., Hu, Z., Ahuja, N., Yang, M.-H.: A comparative study for single image blind deblurring. In: International Conference on Computer Vision and Pattern Recognition, pp. 1701–1709. Las Vegas, USA (2016)

    Google Scholar 

  6. Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 15(11), 3440–3451 (2006)

    Article  Google Scholar 

  7. Larson, E.C., Chandler, D.M.: Most apparent distortion: full reference image quality assessment and the role of strategy. J. Electron. Imaging 19(1), 1–21 (2010)

    Google Scholar 

  8. Ponomarenko, N., et al.: Color image database TID2013: peculiarities and preliminary results. In: 4th European Workshop Visual Information Processing (EUVIP), pp. 106–111. IEEE, Paris, France (2013)

    Google Scholar 

  9. Hu, B., Li, L.D., Wu, J.J., Qian, J.S.: Subjective and objective quality assessment for image restoration: a critical survey. Signal Process. Image Commun. 85, 1–19 (2020)

    Article  Google Scholar 

  10. Zhu, X., Milanfar, P.: Automatic parameter selection for denoising algorithms using a no-reference measure of image content. IEEE Trans. Image Process. 19(12), 3116–3132 (2010)

    Article  MathSciNet  Google Scholar 

  11. Liu, Y.M., Wang, J., Cho, S., Finkelstein, A., Rusinkiewicz, S.: A no-reference metric for evaluating the quality of motion deblurring. ACM Trans. Graph. 32(6), 1–12 (2013)

    Google Scholar 

  12. Hu, B., Li, L.D., Qian, J.S.: Perceptual quality evaluation for motion deblurring. IET Comput. Vis. 12(6), 796–805 (2018)

    Article  Google Scholar 

  13. Hautiere, N., Tarel, J.-P., Aubert, D., Dumont, E.: Blind contrast enhancement assessment by gradient ratioing at visible edges. J. Image Anal. Stereol. 27(2), 87–95 (2008)

    Article  MathSciNet  Google Scholar 

  14. Min, X.K., Zhai, G.T., Gu, K., et al.: Quality evaluation of image dehazing methods using synthetic hazy images. IEEE Trans. Multimedia 21(9), 2319–2333 (2019)

    Article  Google Scholar 

  15. Kim, J., Lee, S.: Fully deep blind image quality predictor. IEEE J. Sel. Top. Sign. Process. 11(1), 206–220 (2017)

    Article  Google Scholar 

  16. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for largescale image recognition. In: International Conference on Learning Representations. San Diego, CA (2015)

    Google Scholar 

  18. Bradley, R.A., Terry, M.E.: Rank analysis of incomplete block designs the method of paired comparisons. Biometrika 39(3–4), 324–345 (1952)

    MathSciNet  MATH  Google Scholar 

  19. Ma, K.D., Liu, W.T., Wang, Z.: Perceptual evaluation of single image dehazing algorithms. In: IEEE International Conference on Image Processing, pp. 3600–3604. IEEE, Quebec City, Canada (2015)

    Google Scholar 

  20. Moorthy, A.K., Bovik, A.C.: A two-step framework for constructing blind image quality indices. IEEE Signal Process. Lett. 17(5), 513–516 (2010)

    Article  Google Scholar 

  21. Zhang, Y., Chandler, D.M.: “No-reference image quality assessment based on log derivative statistics of natural scenes. J. Electr. Imag. 22(4), 1–11 (2013)

    Google Scholar 

  22. Moorthy, A.K., Bovik, A.C.: Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Trans. Image Process. 20(12), 3350–3364 (2011)

    Article  MathSciNet  Google Scholar 

  23. Saad, M.A., Bovik, A.C.: Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Trans. Image Process. 21(8), 3339–3352 (2012)

    Article  MathSciNet  Google Scholar 

  24. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  Google Scholar 

  25. Gu, K., Zhai, G.T., Yang, X.K., Zhang, W.J.: Using free energy principle for blind image quality assessment. IEEE Trans. Multimedia 17(1), 50–63 (2015)

    Article  Google Scholar 

  26. Ye, P., Kumar, J., Kang, L., Doermann, D.: Unsupervised feature learning framework for no-reference image quality assessment. In: Int. Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 1098–1105. IEEE, Providence, USA (2012)

    Google Scholar 

  27. Xue, W.F., Mou, X.Q., Zhang, L., Bovik, A.C., Feng, X.C.: Blind image quality assessment using joint statistics of gradient magnitude and laplacian features. IEEE Trans. Image Process. 23(11), 4850–4862 (2014)

    Article  MathSciNet  Google Scholar 

  28. Gu, K., et al.: FISBLIM: a five-step blind metric for quality assessment of multiply distorted images. In: IEEE Workshop on Signal Processing Systems (SiPS 2013), pp. 241–246. IEEE, Taipei City, Taiwan, China (2013)

    Google Scholar 

  29. Gu, K., Zhai, G.T., Yang, X.K., Zhang, W.J.: Hybrid no-reference quality metric for singly and multiply distorted images. IEEE Trans. Broadcast. 60(3), 555–567 (2014)

    Article  Google Scholar 

  30. Li, Q.H., Lin, W.S., Fang, Y.M.: No-reference quality assessment for multiply-distorted images in gradient domain. IEEE Signal Process. Lett. 23(4), 541–545 (2016)

    Article  Google Scholar 

  31. Hu, B., Li, L.D., Liu, H.T., Lin, W.S., Qian, J.S.: Pairwise-comparison-based rank learning for benchmarking image restoration algorithms. IEEE Trans. Multimedia 21(8), 2042–2056 (2019)

    Article  Google Scholar 

  32. Kim, J., Lee, S.: Deep learning of human visual sensitivity in image quality assessment framework. In: International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1969–1977. IEEE, Honolulu, USA (2017)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China under Grants 61771473, 61991451 and 61379143, Natural Science Foundation of Jiangsu Province under Grant BK20181354, the Fundamental Research Funds for the Central Universities under Grant JBF211902, the Key Project of Shaanxi Provincial Department of Education under Grant 20JY024, the Science and Technology Plan of Xian under Grant 20191122015KYPT011JC013, and the Six Talent Peaks High- level Talents in Jiangsu Province under Grant XYDXX-063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leida Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, L., Hu, B., Huang, Y., Zhu, H. (2021). Reduced-reference Perceptual Discrepancy Learning for Image Restoration Quality Assessment. In: Fang, L., Chen, Y., Zhai, G., Wang, J., Wang, R., Dong, W. (eds) Artificial Intelligence. CICAI 2021. Lecture Notes in Computer Science(), vol 13069. Springer, Cham. https://doi.org/10.1007/978-3-030-93046-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93046-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93045-5

  • Online ISBN: 978-3-030-93046-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics