Abstract
In this paper, we consider the problem of reference-based video super-resolution(RefVSR), i.e., how to utilize a high-resolution (HR) reference frame to super-resolve a low-resolution (LR) video sequence. The existing approaches to RefVSR essentially attempt to align the reference and the input sequence, in the presence of resolution gap and long temporal range. However, they either ignore temporal structure within the input sequence, or suffer accumulative alignment errors. To address these issues, we propose EFENet to exploit simultaneously the visual cues contained in the HR reference and the temporal information contained in the LR sequence. EFENet first globally estimates cross-scale flow between the reference and each LR frame. Then our novel flow refinement module of EFENet refines the flow regarding the furthest frame using all the estimated flows, which leverages the global temporal information within the sequence and therefore effectively reduces the alignment errors. We provide comprehensive evaluations to validate the strengths of our approach, and to demonstrate that the proposed framework outperforms the state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Code is available at https://github.com/IndigoPurple/EFENet.
References
Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2014
Bao, W., Lai, W.S., Zhang, X., Gao, Z., Yang, M.H.: MEMC-Net: motion estimation and motion compensation driven neural network for video interpolation and enhancement. IEEE Trans. Pattern Anal. Mach. Intell. (2018). https://doi.org/10.1109/TPAMI.2019.2941941
Boominathan, V., Mitra, K., Veeraraghavan, A.: Improving resolution and depth-of-field of light field cameras using a hybrid imaging system. In: 2014 IEEE International Conference on Computational Photography (ICCP), pp. 1â10. IEEE (2014)
Brady, D.J., et al.: Multiscale gigapixel photography. Nature 486(7403), 386â389 (2012)
Buades, A., Coll, B., Morel, J.M.: Non-local means denoising. Image Process. Line 1, 208â212 (2011)
Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184â199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13
Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: IEEE International Conference on Computer Vision, pp. 2758â2766 (2015)
Haris, M., Shakhnarovich, G., Ukita, N.: Recurrent back-projection network for video super-resolution. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Haris, M., Shakhnarovich, G., Ukita, N.: Recurrent back-projection network for video super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019
Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681â4690 (2017)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234â241 (2015)
Sajjadi, M.S.M., Vemulapalli, R., Brown, M.: Frame-recurrent video super-resolution. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6626â6634 (2018)
Sajjadi, M.S., Scholkopf, B., Hirsch, M.: EnhanceNet: single image super-resolution through automated texture synthesis. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4491â4500 (2017)
Sun, J., Xu, Z., Shum, H.Y.: Image super-resolution using gradient profile prior. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1â8. IEEE (2008)
Tan, Y., et al.: CrossNet++: cross-scale large-parallax warping for reference-based super-resolution. IEEE Comput. Archit. Lett. 01, 1â1 (2020)
Tao, X., Gao, H., Liao, R., Wang, J., Jia, J.: Detail-revealing deep video super-resolution. In: IEEE International Conference on Computer Vision, pp. 4482â4490 (2017)
Tao, X., Gao, H., Liao, R., Wang, J., Jia, J.: Detail-revealing deep video super-resolution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4472â4480 (2017)
Timofte, R., De Smet, V., Van Gool, L.: Anchored neighborhood regression for fast example-based super-resolution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1920â1927 (2013)
Wang, X., Chan, K.C., Yu, K., Dong, C., Loy, C.C.: EDVR: video restoration with enhanced deformable convolutional networks. In: The IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), June 2019
Wang, Y., Liu, Y., Heidrich, W., Dai, Q.: The light field attachment: turning a DSLR into a light field camera using a low budget camera ring. IEEE Trans. Visual Comput. Graphics 23(10), 2357â2364 (2016)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600â612 (2004)
Wu, J., Wang, H., Wang, X., Zhang, Y.: A novel light field super-resolution framework based on hybrid imaging system. In: 2015 Visual Communications and Image Processing (VCIP), pp. 1â4. IEEE (2015)
Xue, T., Chen, B., Wu, J., Wei, D., Freeman, W.T.: Video enhancement with task-oriented flow. Int. J. Comput. Vis. 127, 1â20 (2019)
Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw image patches. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1â8. Citeseer (2008)
Yuan, X., Fang, L., Dai, Q., Brady, D.J., Liu, Y.: Multiscale gigapixel video: a cross resolution image matching and warping approach. In: 2017 IEEE International Conference on Computational Photography (ICCP), pp. 1â9. IEEE (2017)
Zhang, J., et al.: Multiscale-VR: multiscale gigapixel 3D panoramic videography for virtual reality. In: IEEE International Conference on Computational Photography (2020)
Zhang, Z., Wang, Z., Lin, Z., Qi, H.: Image super-resolution by neural texture transfer. arXiv:1903.00834v1 (2019)
Zheng, H., Guo, M., Wang, H., Liu, Y., Fang, L.: Combining exemplar-based approach and learning-based approach for light field super-resolution using a hybrid imaging system. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 2481â2486 (2017)
Zheng, H., Ji, M., Wang, H., Liu, Y., Fang, L.: Learning cross-scale correspondence and patch-based synthesis for reference-based super-resolution. In: BMVC (2017)
Zheng, H., Ji, M., Wang, H., Liu, Y., Fang, L.: CrossNet: an end-to-end reference-based super resolution network using cross-scale warping. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 87â104. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_6
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Âİ 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhao, Y., Ji, M., Huang, R., Wang, B., Wang, S. (2021). EFENet: Reference-Based Video Super-Resolution with Enhanced Flow Estimation. In: Fang, L., Chen, Y., Zhai, G., Wang, J., Wang, R., Dong, W. (eds) Artificial Intelligence. CICAI 2021. Lecture Notes in Computer Science(), vol 13069. Springer, Cham. https://doi.org/10.1007/978-3-030-93046-2_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-93046-2_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-93045-5
Online ISBN: 978-3-030-93046-2
eBook Packages: Computer ScienceComputer Science (R0)