Abstract
Subspace clustering has been widely used in image segmentation. These methods usually use superpixel segmentation to pre-segment image, while the superpixel segmentation method always divides image into superpixel blocks of similar shape and size, which results in poor segmentation and is time-consuming. In addition, the existing image segmentation methods based on subspace clustering don’t consider processing nonlinear structure data and complex noise. In order to solve the above problems, this paper proposes an image segmentation method (AMR_WT_NLMSC) based on non-convex low-rank multi-kernel clustering, which uses the adaptive morphological reconstruction seed segmentation (AMR_WT) for pre-segmentation, and designs non-convex low-rank multi-kernel subspace clustering (NLMSC) achieves the final segmentation. Experiments on real image datasets show that AMR_WT _NLMSC method has the more accurate segmentation effect.
This work has been supported in part by the National Natural Science Foundation of China under Grant 62102331, the National Natural Science Foundation of China under Grant 61772272, the Sichuan Province Science and Technology Support Program under Grant Nos. 2020YJ0432, 2020YFS0360, 18YYJC1688 and 18ZB0611, and the Postgraduate Innovation Fund Project by Southwest University of Science and Technology under Grant 20ycx0032.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ren, X., Malik, J.: Learning a classification model for segmentation. In: IEEE International Conference on Computer Vision, vol. 2, pp. 10–17. IEEE Computer Society (2003)
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels. Technical report (2010)
Cheng, B., Liu, G., Wang, J., Huang, Z.Y., Yan, S.: Multi-task low-rank affinity pursuit for image segmentation. In: IEEE International Conference on Computer Vision (2011)
Li, T., Wang, W.W., Zhai, D., Jia, X.X., et al.: Weighted-sparse subspace clustering method for image segmentation. Syst. Eng. Electron. 36(3), 580–585 (2014)
Li, X.P., Wang, W.W., Luo, L., Wang, S.Q., et al.: Improved sparse subspace clustering method for image segmentation. Syst. Eng. Electron. 37(10), 2418–2424 (2010)
Al-Azawi, R.J., Al-Jubouri, Q.S., Mohammed, Y.A.: Enhanced algorithm of superpixel segmentation using simple linear iterative clustering. In: 2019 12th International Conference on Developments in eSystems Engineering (DeSE) (2020)
Lei, T., Jia, X., Liu, T., Liu, S., Meng, H., Nandi, A.K.: Adaptive morphological reconstruction for seeded image segmentation. IEEE Trans. Image Process. 28(11), 5510–5523 (2019)
Boykov, Y., Funka-Lea, G.: Graph cuts and efficient ND image segmentation. Int. J. Comput. Vis. 70(2), 109–131 (2006)
Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)
Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Comput. Archit. Lett. 13(06), 583–598 (1991)
Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)
Patel, V.M., Vidal, R.: Kernel sparse subspace clustering, pp. 2849–2853. IEEE (2014)
Lu, C., Feng, J., Lin, Z., Mei, T., Yan, S.: Subspace clustering by block diagonal representation. IEEE Trans. Pattern Anal. Mach. Intell. 41(2), 487–501 (2018)
Boyd, S., Parikh, N., Chu, E.: Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Now Publishers Inc., Norwell (2011)
Yang, C., Ren, Z., Sun, Q., Wu, M., Yin, M., Sun, Y.: Joint correntropy metric weighting and block diagonal regularizer for robust multiple kernel subspace clustering. Inf. Sci. 500, 48–66 (2019)
Xue, X., Zhang, X., Feng, X., Sun, H., Chen, W., Liu, Z.: Robust subspace clustering based on non-convex low-rank approximation and adaptive kernel. Inf. Sci. 513, 190–205 (2020)
Huang, H., Chuang, Y., Chen, C.: Multiple kernel fuzzy clustering. IEEE Trans. Fuzzy Syst. 20(1), 120–134 (2012)
Du, L., et al.: Robust multiple kernel k-means using l21-norm (2015)
Kang, Z., Peng, C., Cheng, Q., Xu, Z.: Unified spectral clustering with optimal graph. Learning. arXiv:1711.04258 (2017)
Kang, Z., Wen, L., Chen, W., Xu, Z.: Low-rank kernel learning for graph-based clustering. Knowl. Based Syst. 163, 510–517 (2019)
Kang, Z., Lu, X., Yi, J., Xu, Z.: Self-weighted multiple kernel learning for graph-based clustering and semi-supervised classification. Machine Learning arXiv:1806.07697 (2018)
Ji, P., Reid, I., Garg, R., Li, H., Salzmann, M.: Low-rank kernel subspace clustering. CoRR (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Xue, X., Wang, X., Zhang, X., Wang, J., Liu, Z. (2021). Image Segmentation Based on Non-convex Low Rank Multiple Kernel Clustering. In: Fang, L., Chen, Y., Zhai, G., Wang, J., Wang, R., Dong, W. (eds) Artificial Intelligence. CICAI 2021. Lecture Notes in Computer Science(), vol 13069. Springer, Cham. https://doi.org/10.1007/978-3-030-93046-2_36
Download citation
DOI: https://doi.org/10.1007/978-3-030-93046-2_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-93045-5
Online ISBN: 978-3-030-93046-2
eBook Packages: Computer ScienceComputer Science (R0)