Skip to main content

MPNet: Multi-scale Parallel Codec Net for Medical Image Segmentation

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2021)

Abstract

Medical image segmentation based on the deep learning codec network achieves highly accurate segmentation. However, the structure of the tandem decoder at different scales makes it difficult for the model to segment detailed regions well. Although such detailed areas are small, they are very important in clinical medicine, and therefore one current challenge is to improve detail segmentation. In this paper, we propose a method called the MPNet (Multi-scale Parallel Codec Net), which contains a structure with parallel encoder-decoder routes that respectively comprise a scale transformer and convolution. They extract characteristics at various scales, and the feature maps of each scale are fused through an intersection module to predict the output. The parallel multi-scale routes increase the width of the model, and thus a deep architecture is not needed to obtain precise segmentation. These shallow paths independently learn semantic features at different scales and make the gradient back-propagation faster and more stable. Moreover, a new time-varying loss function is also proposed to speed up network convergence further. Experimental results on four public datasets show that the proposed method performs better than some state-of-the-art methods.

This research was supported by the National Natural Science Foundation of China (62027827, 62032022, 61929104, 61972375, 61671426), the Beijing Natural Science Foundation (4182071) and Scientific Research Program of Beijing Municipal Education Commission (KZ201911417048).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  2. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)

    Google Scholar 

  3. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 179–187. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_19

    Chapter  Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  5. Hesamian, M.H., Jia, W., He, X., Kennedy, P.: Deep learning techniques for medical image segmentation: achievements and challenges. J. Digit. Imaging 32(4), 582–596 (2019)

    Article  Google Scholar 

  6. Isensee, F., et al.: nnU-Net: self-adapting framework for U-Net-based medical image segmentation. arXiv preprint arXiv:1809.10486 (2018)

  7. Jia, Y., Huang, C., Darrell, T.: Beyond spatial pyramids: receptive field learning for pooled image features. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3370–3377. IEEE (2012)

    Google Scholar 

  8. Kavur, A.E., Selver, M.A., Dicle, O., Barış, M., Gezer, N.S.: CHAOS - combined (CT-MR) healthy abdominal organ segmentation challenge data, April 2019. https://doi.org/10.5281/zenodo.3362844

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  10. Lin, G., Milan, A., Shen, C., Reid, I.: RefineNet: multi-path refinement networks for high-resolution semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1925–1934 (2017)

    Google Scholar 

  11. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  12. Luo, W., Li, Y., Urtasun, R., Zemel, R.: Understanding the effective receptive field in deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 29, 4898–4906 (2016)

    Google Scholar 

  13. Maška, M., et al.: A benchmark for comparison of cell tracking algorithms. Bioinformatics 30(11), 1609–1617 (2014)

    Article  Google Scholar 

  14. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  16. Shvets, A.A., Rakhlin, A., Kalinin, A.A., Iglovikov, V.I.: Automatic instrument segmentation in robot-assisted surgery using deep learning. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 624–628. IEEE (2018)

    Google Scholar 

  17. Simpson, A.L., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv preprint arXiv:1902.09063 (2019)

  18. Sinha, A., Dolz, J.: Multi-scale self-guided attention for medical image segmentation. IEEE J. Biomed. Health Inform. 25, 121–130 (2020)

    Article  Google Scholar 

  19. Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015). https://doi.org/10.1109/CVPR.2015.7298594

  20. Wang, G., Sun, C., Sowmya, A.: ERL-net: entangled representation learning for single image de-raining. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5643–5651 (2019). https://doi.org/10.1109/ICCV.2019.00574

  21. Xue, Y., Xu, T., Zhang, H., Long, L.R., Huang, X.: SegAN: adversarial network with multi-scale l 1 loss for medical image segmentation. Neuroinformatics 16(3), 383–392 (2018)

    Article  Google Scholar 

  22. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  23. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, B., Xue, J., Lu, K., Tan, Y., Zhao, Y. (2021). MPNet: Multi-scale Parallel Codec Net for Medical Image Segmentation. In: Fang, L., Chen, Y., Zhai, G., Wang, J., Wang, R., Dong, W. (eds) Artificial Intelligence. CICAI 2021. Lecture Notes in Computer Science(), vol 13069. Springer, Cham. https://doi.org/10.1007/978-3-030-93046-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93046-2_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93045-5

  • Online ISBN: 978-3-030-93046-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics