Skip to main content

Arable Land Change Detection Using Landsat Data and Deep Learning

  • Conference paper
  • First Online:
Book cover Artificial Intelligence (CICAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13069))

Included in the following conference series:

  • 1980 Accesses

Abstract

Arable land is closely related to people’s livelihood. Protecting arable land is very urgent. Thus, rapid and accurate detection of arable land changes is especially important for arable land protection. However, most existing deep learning-based methods can easily lead to the accumulation of errors, low accuracy, and have poor anti-noise ability. In this study, we proposed an improved U-Net model for arable land change detection. This is an end-to-end network that is briefer and more intuitive. The model was trained and tested on three arable land areas in Xinjiang. We trained Landsat 8 images of exuberant arable land areas with RGB and 15 m spatial resolution. The improved U-Net model has some advantages compared to other methods: the deeper U-Net has a larger field of perception, with greater noise immunity, and deep convolution can capture more complex spectral features, thus improving feature differentiation. Considering that the deeper the network, the easier the gradient disappears, we use residual units to prevent gradients from disappearing. Moreover, the model parameters were adjusted to reduce the complexity of the model. The experimental results show superior performance on change detection tasks compared to other traditional models with 96.00% accuracy, precision, recall, and FI score, 93.54%, 85.07%, 88.29%. Through experiments, we found that the network can detect the change of cultivated land well. Thus, the proposed model can effectively implement arable land change detection.

This research was funded by [the National Natural Science Foundation of China] grant number [No. U1603115], [the National Key Research and Development Program of China] grant number [No. 2017YFBO504203], [the Science and Technology Planning Project of Sichuan Province] grant number [No. 18SXHZ0054] and [National Engineering Laboratory for Public Safety Risk Perception and Control by Big Data] grant number [PSRPC: No. XJ201810101].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, L., Cheng, J.: Arable land protection based on the change of Chinese cultivated land in 2015. The Great Western Development (Land Development Project Research) (2018)

    Google Scholar 

  2. Wang, J., Li, P., Zhan, Y.Q., Tian, S.Y.: Study on the protection and improvement of cultivated land quality in China. China Popul. Resour. Environ. 29, 87–93 (2019)

    Google Scholar 

  3. Ge, Y., Hu, S., Ren, Z., Jia, Y., Chen, Y.: Mapping annual land use changes in china’s poverty-stricken areas from 2013 to 2018. Remote Sens. Environ. 232, 111285 (2019)

    Google Scholar 

  4. Liu, D., Gong, Q., Yang, W.: The evolution of farmland protection policy and optimization path from 1978 to 2018. Chinese Rural Economy (2018)

    Google Scholar 

  5. Mou, L., Bruzzone, L., Zhu, X.X.: Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery. IEEE Trans. Geosci. Remote Sens. (2019)

    Google Scholar 

  6. Lv, P., Zhong, Y., Zhao, J., Zhang, L.: Unsupervised change detection based on hybrid conditional random field model for high spatial resolution remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 1–14 (2018)

    Google Scholar 

  7. Anniballe, R., et al.: Earthquake damage mapping: an overall assessment of ground surveys and VHR image change detection after L’Aquila 2009 earthquake. Remote Sens. Environ. Interdiscip. J. 210, 166–178 (2018)

    Article  Google Scholar 

  8. Tong, G.F., Li, Y., Ding, W.L., Yue, X.Y.: Review of remote sensing image change detection. J. Image Graph. (2015)

    Google Scholar 

  9. Cai and Liu: A comparison of object-based and contextual pixel-based classifications using high and medium spatial resolution images. Remote Sens. Lett. 4(10), 998–1007 (2013)

    Article  Google Scholar 

  10. Zhang, P., Lv, Z., Shi, W.: Object-based spatial feature for classification of very high resolution remote sensing images. IEEE Geosci. Remote Sens. Lett. 10(6), 1572–1576 (2013)

    Article  Google Scholar 

  11. Mahmoudi, F.T., Samadzadegan, F., Reinartz, P.: Context aware modification on the object based image analysis. J. Indian Soc. Remote Sens. 43(4), 709–717 (2015)

    Article  Google Scholar 

  12. Gong, J.Y., Sui, H.G., Sun, K.M., Ma, G.R., Liu, J.Y.: Object-level change detection based on full-scale image segmentation and its application to wenchuan earthquake. Sci. China 51(2 Supplement), 110–122 (2008)

    Article  Google Scholar 

  13. Sui, H., Feng, W., Wenzhuo, L.I., Sun, K., Chuan, X.U.: Review of change detection methods for multi-temporal remote sensing imagery. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics Inf. Sci. Wuhan Univ. 43(12), 1885–1898 (2018)

    Google Scholar 

  14. Haobo, L., Lu, H., Mou, L.: Learning a transferable change rule from a recurrent neural network for land cover change detection. Remote Sens. 8(6), 506 (2016)

    Article  Google Scholar 

  15. Sublime, J., Kalinicheva, E.: Automatic post-disaster damage mapping using deep-learning techniques for change detection: case study of the tohoku tsunami. Remote Sens. 11(9), 1123 (2019)

    Google Scholar 

  16. De Bem, P.P., De Carvalho Junior, O.A., Fontes Guimarães, R., Trancoso Gomes, R.A.: Change detection of deforestation in the Brazilian Amazon using landsat data and convolutional neural networks. Remote Sens. 12(6), 901 (2020)

    Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2015)

    Google Scholar 

  19. Alom, M.Z., Yakopcic, C., Taha, T.M., Asari, V.K.: Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation (2018)

    Google Scholar 

  20. Li, H., Chen, D., Nailon, W.H., Davies, M.E., Laurenson, D.: Improved breast mass segmentation in mammograms with conditional residual U-Net. In: Stoyanov, D., et al. (eds.) RAMBO/BIA/TIA -2018. LNCS, vol. 11040, pp. 81–89. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00946-5_9

    Chapter  Google Scholar 

  21. Kolařík, M., Burget, R., Uher, V., Říha, K., Dutta, M.: Optimized high resolution 3d dense-u-net network for brain and spine segmentation. Appl. Sci. 9(3) (2019)

    Google Scholar 

  22. Daudt, R.C., Le Saux, B., Boulch, A.: Fully convolutional siamese networks for change detection. IEEE (2018)

    Google Scholar 

  23. Xu, Y., Feng, M., Pi, J., Chen, Y.: Remote sensing image segmentation method based on deep learning model (2019)

    Google Scholar 

  24. Gu, L., Xu, S.Q., Zhu, L.Q.: Detection of building changes in remote sensing images via flows-unet. Acta Autom. Sin. 46(6), 1291–1300

    Google Scholar 

  25. Flood, N., Watson, F., Collett, L.: Using a u-net convolutional neural network to map woody vegetation extent from high resolution satellite imagery across Queensland, Australia. Int. J. Appl. Earth Obs. Geoinf. 82, 101897 (2019)

    Google Scholar 

  26. Hamdi, Z.M., Brandmeier, M., Straub, C.: Forest damage assessment using deep learning on high resolution remote sensing data. Remote Sens. 11(17), 1976 (2019)

    Google Scholar 

  27. Jaturapitpornchai, R., Matsuoka, M., Kanemoto, N., Kuzuoka, S., Ito, R., Nakamura, R.: Newly built construction detection in SAR images using deep learning. Remote Sens. 11(12), 1444 (2019)

    Article  Google Scholar 

  28. Peng, D., Zhang, Y., Guan, H.: End-to-end change detection for high resolution satellite images using improved UNet++. Remote Sens. 11(11), 1382 (2019)

    Google Scholar 

  29. Pan, Z., Xu, J., Guo, Y., Hu, Y., Wang, G.: Deep learning segmentation and classification for urban village using a worldview satellite image based on u-net. Remote Sens. 12(1574) (2020)

    Google Scholar 

  30. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  31. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  32. Cao, K., Zhang, X.: An improved res-unet model for tree species classification using airborne high-resolution images. Remote Sens. 12(7), 1128 (2020)

    Article  Google Scholar 

  33. Yang, J., Zhu, Y., Jiang, B., Gao, L., Xiao, L., Zheng, Z.: Aircraft detection in remote sensing images based on a deep residual network and super-vector coding. Remote Sens. Lett. 9(3), 228–236 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, M., Yang, W. (2021). Arable Land Change Detection Using Landsat Data and Deep Learning. In: Fang, L., Chen, Y., Zhai, G., Wang, J., Wang, R., Dong, W. (eds) Artificial Intelligence. CICAI 2021. Lecture Notes in Computer Science(), vol 13069. Springer, Cham. https://doi.org/10.1007/978-3-030-93046-2_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93046-2_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93045-5

  • Online ISBN: 978-3-030-93046-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics