Skip to main content

DRPEC: An Evolutionary Clustering Algorithm Based on Dynamic Representative Points

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13069))

Included in the following conference series:

  • 2025 Accesses

Abstract

This paper discusses an evolutionary clustering algorithm that uses dynamic representative points as the core of sample cluster (DRPEC). DRPEC algorithm calculates the similarity between samples and representative points by Gaussian function, and splits the winning representative points according to the principle of “Winner-take-all”, to construct a representative point spanning tree that can represent the cluster relation. DRPEC algorithm takes a representative point as the starting point, realizes the dynamic evolution of the representative points in an incremental way, and merges the sub-clusters represented by the nodes in the representative point spanning tree according to our designed measuring function, in order to effectively find the natural clusters existing in the data space. Finally, numerous experiments were conducted on UCI datasets, and compared with the current popular clustering algorithm, the results show that the DRPEC algorithm has excellent clustering performance and strong robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu, D., Tian, Y.: A comprehensive survey of clustering algorithms. Ann. Data Sci. 2(2), 165–193 (2015)

    Article  MathSciNet  Google Scholar 

  2. Suo, M., Zhu, B., Ding, Z., An, R., Li, S.: Neighborhood grid clustering and its application in fault diagnosis of satellite power system. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 233(4), 095441001775199 (2018)

    Google Scholar 

  3. Xu, K.S., Kliger, M., Iii, A.H.: Adaptive evolutionary clustering. Data Min. Knowl. Disc. 28(2), 304–336 (2014)

    Article  MathSciNet  Google Scholar 

  4. Xu, J., Lange, K.: Power k-means clustering. In: International Conference on Machine Learning, PMLR, vol. 97, pp. 6921–6931 (2019)

    Google Scholar 

  5. Bagirov, A.M., Ugon, J., Webb, D.: Fast modified global k-means algorithm for incremental cluster construction. Pattern Recognit. 44(4), 866–876 (2011)

    Article  Google Scholar 

  6. Franti, P., Sieranoja, S.: How much k-means can be improved by using better initialization and repeats? Pattern Recognit. 93, 95–112 (2019)

    Google Scholar 

  7. Arthur, D., Vassilvitskii, S.: K-Means++: the advantages of carefull seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposiumon Discrete algorithms, Society for Industrial and Applied Mathematics, vol. 11, no. 6, pp. 1027–1035 (2007)

    Google Scholar 

  8. Lattanzi, S., Sohler, C.: A better k-means++ algorithm via local search. In: International Conference on Machine Learning, PMLR, pp. 3662–3671 (2019)

    Google Scholar 

  9. Ester, M.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)

    Google Scholar 

  10. Zhu, Ye., Ting, M.K., Carman, M.J.: Density-ratio based clustering for discovering clusters with varying densities. Pattern Recognit. 60, 983–997 (2016)

    Google Scholar 

  11. Bechini, A., Marcelloni, F., Renda, A.: TSF-DBSCAN: a novel fuzzy density-based approach for clustering unbounded data streams. IEEE Trans. Fuzzy Syst. 99, 1 (2020)

    Google Scholar 

  12. Chen, Y., Zhou, L., Bouguila, N., Wang, C., Du, J.: BLOCK-DBSCAN: fast clustering for large scale data. Pattern Recognit. 109, 107624 (2020)

    Article  Google Scholar 

  13. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science 344(6191), 1492 (2014)

    Article  Google Scholar 

  14. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. Adv. Neural. Inf. Process. Syst. 2, 849–856 (2002)

    Google Scholar 

  15. Ding, S., Cong, L., Hu, Q., Jia, H., Shi, Z.: A multiway p-spectral clustering algorithm. Knowl.-Based Syst. 164(15), 849–856 (2019)

    Google Scholar 

  16. Vesanto, J., Alhoniemi, E.: Clustering of the self-organizing map. IEEE Trans. Neural Netw. 11(3), 586–600 (2000)

    Article  Google Scholar 

  17. Xu, G., Zhang, L., Ma, C., Liu, Y.: A mixed attributes oriented dynamic SOM fuzzy cluster algorithm for mobile user classification. Inf. Sci. 515(3), 280–293 (2019)

    Google Scholar 

  18. Karypis, G., Han, E.H., Kumar, V.: Chameleon: hierarchical clustering using dynamic modeling. Computer-Los Alamos 32(8), 68–75 (1999)

    Google Scholar 

  19. Zhang, Y., Ding, S., Wang, Y., Hou, H.: Chameleon algorithm based on improved natural neighbor graph generating sub-clusters. Appl. Intell., 1–17 (2021)

    Google Scholar 

  20. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  21. Li, T., Ding, C.: The relationships among various nonnegative matrix factorization methods for clustering. In: International Conference on Data Mining, pp. 362–371 (2006)

    Google Scholar 

  22. Strehl, A., Ghosh, J.: Cluster ensembles-a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3(3), 583–617 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Lerman, I.C., Peter, P.: Comparing partitions. Czech J. Phys. 8(10), 742–748 (1988)

    Google Scholar 

  24. Soleymani, R., Granger, E., Fumera, G.: F-measure curves: a tool to visualize classifier performance under imbalance. Pattern Recognit. 100, 107146 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibin Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, P., Xie, H., Ding, Z. (2021). DRPEC: An Evolutionary Clustering Algorithm Based on Dynamic Representative Points. In: Fang, L., Chen, Y., Zhai, G., Wang, J., Wang, R., Dong, W. (eds) Artificial Intelligence. CICAI 2021. Lecture Notes in Computer Science(), vol 13069. Springer, Cham. https://doi.org/10.1007/978-3-030-93046-2_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93046-2_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93045-5

  • Online ISBN: 978-3-030-93046-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics