Skip to main content

Exploiting Visual Context and Multi-grained Semantics for Social Text Emotion Recognition

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13069))

Included in the following conference series:

  • 2266 Accesses

Abstract

Social text is a kind of user-generated data on social media, which can reflect the opinions and emotions of netizens in their social activities. The study about emotion recognition for social text could help us clarify netizens’ emotional position on certain issues, products, or services to support opinion monitoring, marketing management and so on. But with the continuous improvement of information technology, the mode of emotional expression has become increasingly complex and diverse. For the sake of concise and comprehensive implications, social texts are usually very short and noisy, which are often accompanied with visual context and pictorial multi-grained semantics. Therefore, traditional research strategies based on plain text analysis have great limitations faced with those contents. To this end, we in this article focus on the semantic and emotional uncertainty in social texts through taking into account the textual content of social text and its related non-text information to improve emotion semantic representations for social text emotion recognition. Specifically, to realize the visual context modeling, we first leverage the visual information associated with social text as the contextual supplement to enhance the emotional semantics of short social text. Then, we model the semantics of social text with different granularity to fully mine the limited information of social text. After that, with the help of visual context enhancement and multi-grained semantic mining, we are capable of alleviating the limited expression of social text and its uncertainty of semantics and emotions. This could represent the emotion semantics of social text effectively for its emotion recognition. Finally, extensive experiments on the real multi-modal dataset demonstrate that our proposed method has promising results with high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.keenage.com/html/c_index.html.

  2. 2.

    https://wenku.baidu.com/view/22191501b9d528ea81c779dd.html.

References

  1. Abbasi, A., Chen, H., Salem, A.: Sentiment analysis in multiple languages: feature selection for opinion classification in web forums. ACM Trans. Inf. Syst. (TOIS) 26(3), 1–34 (2008)

    Article  Google Scholar 

  2. Abbasi, A., France, S., Zhang, Z., Chen, H.: Selecting attributes for sentiment classification using feature relation networks. TKDE 23(3), 447–462 (2010)

    Google Scholar 

  3. Acheampong, F.A., Wenyu, C., Nunoo-Mensah, H.: Text-based emotion detection: advances, challenges, and opportunities. Eng. Rep. 2(7), e12189 (2020)

    Google Scholar 

  4. Alswaidan, N., Menai, M.E.B.: A survey of state-of-the-art approaches for emotion recognition in text. Knowl. Inf. Syst. 62(8), 1–51 (2020)

    Google Scholar 

  5. Bakshi, R.K., Kaur, N., Kaur, R., Kaur, G.: Opinion mining and sentiment analysis. In: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), pp. 452–455. IEEE (2016)

    Google Scholar 

  6. Basiri, M.E., Nemati, S., Abdar, M., Cambria, E., Acharya, U.R.: ABCDM: an attention-based bidirectional CNN-RNN deep model for sentiment analysis. Futur. Gener. Comput. Syst. 115, 279–294 (2021)

    Article  Google Scholar 

  7. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

  8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  9. Dong, Z., Dong, Q., Hao, C.: Hownet and its computation of meaning. In: COLING 2010, pp. 53–56 (2010)

    Google Scholar 

  10. Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990)

    Article  Google Scholar 

  11. Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. CS224N project report, Stanford 1(12), 2009 (2009)

    Google Scholar 

  12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  13. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: SIGKDD 2004, pp. 168–177 (2004)

    Google Scholar 

  14. Kouloumpis, E., Wilson, T., Moore, J.: Twitter sentiment analysis: the good the bad and the OMG! In: AAAI 2011, vol. 5 (2011)

    Google Scholar 

  15. Ku, L.W., Liang, Y.T., Chen, H.H., et al.: Opinion extraction, summarization and tracking in news and blog corpora. In: AAAI 2006, vol. 100107, pp. 1–167 (2006)

    Google Scholar 

  16. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989)

    Article  Google Scholar 

  17. Lin, C., He, Y.: Joint sentiment/topic model for sentiment analysis. In: CIKM 2009, pp. 375–384 (2009)

    Google Scholar 

  18. Liu, K.L., Li, W.J., Guo, M.: Emoticon smoothed language models for twitter sentiment analysis. In: AAAI 2012, vol. 26 (2012)

    Google Scholar 

  19. Luo, L.: Network text sentiment analysis method combining LDA text representation and GRU-CNN. Pers. Ubiquitous Comput. 23(3), 405–412 (2018). https://doi.org/10.1007/s00779-018-1183-9

    Article  Google Scholar 

  20. Mishne, G., De Rijke, M., et al.: Capturing global mood levels using blog posts. In: AAAI 2006, vol. 6, pp. 145–152 (2006)

    Google Scholar 

  21. Montavon, G., Orr, G.B., Müller, K.-R. (eds.): Neural Networks: Tricks of the Trade. LNCS, vol. 7700. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8

    Book  Google Scholar 

  22. Pal, S., Ghosh, S., Nag, A.: Sentiment analysis in the light of LSTM recurrent neural networks. Int. J. Synth. Emot. (IJSE) 9(1), 33–39 (2018)

    Article  Google Scholar 

  23. Ping, Q., Chen, C.: Video highlights detection and summarization with lag-calibration based on concept-emotion mapping of crowd-sourced time-sync comments. arXiv preprint arXiv:1708.02210 (2017)

  24. Quan, X., Wang, Q., Zhang, Y., Si, L., Wenyin, L.: Latent discriminative models for social emotion detection with emotional dependency. ACM Trans. Inf. Syst. (TOIS) 34(1), 1–19 (2015)

    Article  Google Scholar 

  25. Rakhlin, A.: Convolutional neural networks for sentence classification. GitHub (2016)

    Google Scholar 

  26. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)

    Article  Google Scholar 

  27. Seal, D., Roy, U.K., Basak, R.: Sentence-level emotion detection from text based on semantic rules. In: Tuba, M., Akashe, S., Joshi, A. (eds.) Information and Communication Technology for Sustainable Development. AISC, vol. 933, pp. 423–430. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-7166-0_42

    Chapter  Google Scholar 

  28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR, San Diego, CA, USA, May 7–9 (2015)

    Google Scholar 

  29. Song, X.Y., Zhao, Y., Jin, L.T., Sun, Y., Liu, T.: Research on the construction of sentiment dictionary based on word2vec. In: Proceedings of the 2018 International Conference on Algorithms, Computing and Artificial Intelligence, pp. 1–6 (2018)

    Google Scholar 

  30. Strapparava, C., Valitutti, A., et al.: Wordnet affect: an affective extension of wordnet. In: Lrec, vol. 4, p. 40. Citeseer (2004)

    Google Scholar 

  31. Tang, D.: Sentiment-specific representation learning for document-level sentiment analysis. In: ICDM 2015, pp. 447–452 (2015)

    Google Scholar 

  32. Tang, D., Wei, F., Qin, Bing, et al.: Building large-scale twitter-specific sentiment lexicon: a representation learning approach. In: COLING, pp. 172–182 (2014)

    Google Scholar 

  33. Tripathi, G., Singh, G.: Sentiment analysis approach based N-gram and KNN classifier. Int. J. Adv. Res. Comput. Sci. 9(3), 209–212 (2018)

    Google Scholar 

  34. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  35. Vateekul, P., Koomsubha, T.: A study of sentiment analysis using deep learning techniques on Thai Twitter data. In: 2016 13th International Joint Conference on Computer Science and Software Engineering (JCSSE), pp. 1–6. IEEE (2016)

    Google Scholar 

  36. Wang, H., Chen, E., Liu, Q., Xu, Tong, et al.: A united approach to learning sparse attributed network embedding. In: ICDM, pp. 557–566. IEEE (2018)

    Google Scholar 

  37. Wang, H., et al.: MCNE: an end-to-end framework for learning multiple conditional network representations of social network. In: SIGKDD 2019, pp. 1064–1072 (2019)

    Google Scholar 

  38. Wang, Y., Huang, M., Zhu, X., Zhao, L.: Attention-based LSTM for aspect-level sentiment classification. In: EMNLP 2016, pp. 606–615 (2016)

    Google Scholar 

  39. Xu, L., Lin, H.: Ontology-driven affective Chinese text analysis and evaluation method. In: Affective Computing & Intelligent Interaction, Second International Conference, Acii, Lisbon, Portugal, September (2007)

    Google Scholar 

  40. Yu, H., Hatzivassiloglou, V.: Towards answering opinion questions: separating facts from opinions and identifying the polarity of opinion sentences. In: EMNLP 2003, pp. 129–136 (2003)

    Google Scholar 

  41. Zagibalov, T., Carroll, J.A.: Automatic seed word selection for unsupervised sentiment classification of Chinese text. In: COLING 2008, pp. 1073–1080 (2008)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program of China (No. 2016YFB1000904), the National Natural Science Foundation of China (No. 61727809) and the Scientific Program of the Higher Education Institution of Xinjiang (No. XJEDU2016S067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enhong Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, W. et al. (2021). Exploiting Visual Context and Multi-grained Semantics for Social Text Emotion Recognition. In: Fang, L., Chen, Y., Zhai, G., Wang, J., Wang, R., Dong, W. (eds) Artificial Intelligence. CICAI 2021. Lecture Notes in Computer Science(), vol 13069. Springer, Cham. https://doi.org/10.1007/978-3-030-93046-2_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93046-2_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93045-5

  • Online ISBN: 978-3-030-93046-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics