Abstract
Anomaly detection is becoming increasingly ubiquitous in the society of data mining. Prominent anomaly detection works have achieved great success in theory and practice. However, they cannot handle the generalized semi-supervised scenario where there are only a handful of labeled anomalies, and plentiful unlabeled data that may bring in some instances of augmented anomaly classes but which are hard to be sampled. To solve this new problem, we propose a method called ACAD (Augmented Classes Anomaly Detection), which consists of three components. ACAD firstly suggests an augmented anomaly class discovery module that connects the isolation score and the similarity score to excavate the instances of hidden anomaly classes from unlabeled data accurately. ACAD then uses a specific cluster approach to compute useful similarity scores to separate reliable anomalous and normal instances among unlabeled data, respectively. ACAD finally builds a robust anomaly detector based on mined examples, successfully performing anomaly detection from partially observed anomalies with augmented classes. A series of empirical studies show that our algorithm remarkably outperforms state of the art on almost twenty datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdallah, A., Maarof, M.A., Zainal, A.: Fraud detection system: a survey. J. Netw. Comput. Appl. 68, 90–113 (2016)
Bekker, J., Davis, J.: Learning from positive and unlabeled data: a survey. Mach. Learn. 109(4), 719–760 (2020). https://doi.org/10.1007/s10994-020-05877-5
Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000)
Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 1–58 (2009)
Chang, S., Du, B., Zhang, L.: BASO: a background-anomaly component projection and separation optimized filter for anomaly detection in hyperspectral images. IEEE Trans. Geosci. Remote Sens. 56(7), 3747–3761 (2018)
Chapelle, O., Scholkopf, B., Zien, A.: Semi-supervised Learning (2006). IEEE Transactions on Neural Networks 20(3), 542–542 (2009)
Chen, Y., Zhu, X., Li, W., Gong, S.: Semi-supervised learning under class distribution mismatch. In: AAAI, pp. 3569–3576 (2020)
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
Cui, L., Biswal, S., Glass, L.M., Lever, G., Sun, J., Xiao, C.: CONAN: complementary pattern augmentation for rare disease detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 614–621 (2020)
Da, Q., Yu, Y., Zhou, Z.H.: Learning with augmented class by exploiting unlabeled data. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28 (2014)
Edgeworth, F.Y.: XLI. On discordant observations. London Edinburgh Dublin Philos. Mag. J. Sci. 23(143), 364–375 (1887)
Ehrhardt, S., Zisserman, A., Rebuffi, S., Han, K., Vedaldi, A.: Automatically discovering and learning new visual categories with ranking statistics. In: Proceedings of the 8th International Conference on Learning Representations, ICLR 2020. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)
Görnitz, N., Kloft, M., Rieck, K., Brefeld, U.: Toward supervised anomaly detection. J. Artif. Intell. Res. 46, 235–262 (2013)
Han, K., Vedaldi, A., Zisserman, A.: Learning to discover novel visual categories via deep transfer clustering. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 8401–8409 (2019)
Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K., Davis, L.S.: Learning temporal regularity in video sequences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 733–742 (2016)
Hsu, Y.C., Lv, Z., Kira, Z.: Learning to cluster in order to transfer across domains and tasks. arXiv preprint arXiv:1711.10125 (2017)
Keller, F., Muller, E., Bohm, K.: HiCS: high contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048. IEEE (2012)
Lee, W.S., Liu, B.: Learning with positive and unlabeled examples using weighted logistic regression. In: ICML, vol. 3, pp. 448–455 (2003)
Leon, E., Nasraoui, O., Gomez, J.: Anomaly detection based on unsupervised niche clustering with application to network intrusion detection. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), vol. 1, pp. 502–508. IEEE (2004)
Liu, B., Dai, Y., Li, X., Lee, W.S., Yu, P.S.: Building text classifiers using positive and unlabeled examples. In: Third IEEE International Conference on Data Mining, pp. 179–186. IEEE (2003)
Liu, B., Lee, W.S., Yu, P.S., Li, X.: Partially supervised classification of text documents. In: ICML, vol. 2, pp. 387–394 (2002)
Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422. IEEE (2008)
Münz, G., Li, S., Carle, G.: Traffic anomaly detection using k-means clustering. In: GI/ITG Workshop MMBnet, pp. 13–14 (2007)
Oliver, A., Odena, A., Raffel, C.A., Cubuk, E.D., Goodfellow, I.: Realistic evaluation of deep semi-supervised learning algorithms. Adv. Neural. Inf. Process. Syst. 31, 3235–3246 (2018)
Rayana, S.: ODDS library (2016)
Ruts, I., Rousseeuw, P.J.: Computing depth contours of bivariate point clouds. Comput. Stat. Data Anal. 23(1), 153–168 (1996)
Sabahi, F., Movaghar, A.: Intrusion detection: a survey. In: 2008 Third International Conference on Systems and Networks Communications, pp. 23–26. IEEE (2008)
Sillito, R.R., Fisher, R.B.: Semi-supervised learning for anomalous trajectory detection. In: BMVC, vol. 1, pp. 035–1 (2008)
Tang, H., Cao, Z.: Machine learning-based intrusion detection algorithms. J. Comput. Inf. Syst. 5(6), 1825–1831 (2009)
Wu, S.Y., Yen, E.: Data mining-based intrusion detectors. Expert Syst. Appl. 36(3), 5605–5612 (2009)
Zhang, J., et al.: Viral pneumonia screening on chest X-ray images using confidence-aware anomaly detection (2020)
Zhang, Y.L., et al.: POSTER: a PU learning based system for potential malicious URL detection. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 2599–2601 (2017)
Zhang, Y.L., Li, L., Zhou, J., Li, X., Zhou, Z.H.: Anomaly detection with partially observed anomalies. In: Companion Proceedings of the Web Conference 2018, pp. 639–646 (2018)
Zhang, Y., Nie, X., He, R., Chen, M., Yin, Y.: Normality learning in multispace for video anomaly detection. IEEE Trans. Circuits Syst. Video Technol. 31, 3694–3706 (2020)
Zhu, X.J.: Semi-supervised learning literature survey. Technical report, University of Wisconsin-Madison Department of Computer Sciences (2005)
Acknowledgement
This work is supported by the National Natural Science Foundation of China (61876098), the National Key R&D Program of China (2018YFC0830100, 2018-YFC0830102).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
He, R., Han, Z., Zhang, Y., He, X., Nie, X., Yin, Y. (2021). Robust Anomaly Detection from Partially Observed Anomalies with Augmented Classes. In: Fang, L., Chen, Y., Zhai, G., Wang, J., Wang, R., Dong, W. (eds) Artificial Intelligence. CICAI 2021. Lecture Notes in Computer Science(), vol 13070. Springer, Cham. https://doi.org/10.1007/978-3-030-93049-3_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-93049-3_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-93048-6
Online ISBN: 978-3-030-93049-3
eBook Packages: Computer ScienceComputer Science (R0)