Skip to main content

A Random Opposition-Based Sparrow Search Algorithm for Path Planning Problem

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13070))

Included in the following conference series:

Abstract

In this paper, an improved intelligence algorithm is proposed for path planning problem. The algorithm is based on Sparrow Search Algorithm and is combined with Random Opposition-based Learning and linear decreasing strategy, named ROSSA. The mobile robot path planning problem can be mathematically transformed into an optimization problem, which can be solved by intelligent optimization algorithms. With this consideration, an SSA-based optimization algorithm is proposed. Random opposition-based learning increases the diversity of the population and enhances the exploration ability of the algorithm; the linear decreasing strategy balances the ability of the algorithm to explore globally and exploit locally by adjusting the algorithm parameters. Meanwhile, the Bezier curve satisfies the requirement of path smoothness for the robot path planning problem. The superiority of the proposed algorithm is verified by conducting experiments with three standard algorithms for 11 benchmark test functions, and some comparison experiments on the path planning problem with PSO and SSA to confirm that the proposed algorithm can find a safe and optimal path in the mobile robot path planning problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reif, J.H.: Complexity of the mover’s problem and generalizations. In: 20th Annual Symposium on Foundations of Computer Science (SFCS 1979), pp. 421–427. IEEE (1979)

    Google Scholar 

  2. Li, G., Chou, W.: Path planning for mobile robot using self-adaptive learning particle swarm optimization. Sci. China Inf. Sci. 61(5), 1–18 (2017). https://doi.org/10.1007/s11432-016-9115-2

    Article  MathSciNet  Google Scholar 

  3. Nilsson, N.J.: A mobile automaton: An application of artificial intelligence techniques. Technical Report, Sri International Menlo Park Ca Artificial Intelligence Center (1969)

    Google Scholar 

  4. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  5. Yan, F., Liu, Y.S., Xiao, J.Z.: Path planning in complex 3d environments using a probabilistic roadmap method. Int. J. Autom. Comput. 10(6), 525–533 (2013)

    Article  Google Scholar 

  6. LaValle, S.M.: Rapidly-exploring random trees: A new tool for path planning (1998)

    Google Scholar 

  7. Yuan, C., Liu, G., Zhang, W., Pan, X.: An efficient RRT cache method in dynamic environments for path planning. Robot. Auton. Syst. 131, 103595 (2020)

    Article  Google Scholar 

  8. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: Cox I.J., Wilfong G.T. (eds.) Autonomous robot vehicles, pp. 396–404. Springer, New York (1986). https://doi.org/10.1007/978-1-4613-8997-2_29

  9. Sabudin, E.N., et al.: Improved potential field method for robot path planning with path pruning. In: Md Zain, Z., et al. (eds.) Proceedings of the 11th National Technical Seminar on Unmanned System Technology 2019. LNEE, vol. 666, pp. 113–127. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-5281-6_9

    Chapter  Google Scholar 

  10. Li, X., Wu, D., He, J., Bashir, M., Liping, M.: An improved method of particle swarm optimization for path planning of mobile robot. J. Control Sci. Eng. 2020 (2020)

    Google Scholar 

  11. Rao, D.C., Kabat, M.R., Das, P.K., Jena, P.K.: Cooperative navigation planning of multiple mobile robots using improved krill herd. Arab. J. Sci. Eng. 43(12), 7869–7891 (2018)

    Article  Google Scholar 

  12. Zhang, B., Duan, Y., Zhang, Y., Wang, Y.: Particle swarm optimization algorithm based on beetle antennae search algorithm to solve path planning problem. In: 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), vol. 1, pp. 1586–1589. IEEE (2020)

    Google Scholar 

  13. Xue, J., Shen, B.: A novel swarm intelligence optimization approach: sparrow search algorithm. Syst. Sci. Control Eng. 8(1), 22–34 (2020)

    Article  Google Scholar 

  14. Tizhoosh, H.R.: Opposition-based learning: a new scheme for machine intelligence. In: International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC 2006), vol. 1, pp. 695–701. IEEE (2005)

    Google Scholar 

  15. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.: Quasi-oppositional differential evolution. In: 2007 IEEE Congress on Evolutionary Computation, pp. 2229–2236. IEEE (2007)

    Google Scholar 

  16. Ergezer, M., Simon, D., Du, D.: Oppositional biogeography-based optimization. In: 2009 IEEE International Conference on Systems, Man and Cybernetics, pp. 1009–1014. IEEE (2009)

    Google Scholar 

  17. Seif, Z., Ahmadi, M.B.: An opposition-based algorithm for function optimization. Eng. Appl. Artif. Intell. 37, 293–306 (2015)

    Article  Google Scholar 

  18. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.: Opposition-based differential evolution. IEEE Trans. Evol. Comput. 12(1), 64–79 (2008)

    Article  Google Scholar 

  19. Bairathi, D., Gopalani, D.: Random-opposition-based learning for computational intelligence. In: Tuba, M., Akashe, S., Joshi, A. (eds.) Information and Communication Technology for Sustainable Development. AISC, vol. 933, pp. 111–120. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-7166-0_11

    Chapter  Google Scholar 

  20. Qinghua, M., Qiang, Z.: Improved sparrow algorithm combining cauchy mutation and opposition-based learning. J. Front. Comput. Sci. Technol. 15, 1–12 (2020)

    Google Scholar 

  21. Farin, G.: Curves and Surfaces for Computer-Aided Geometric Design: a Practical Guide. Elsevier, Amsterdam (2014)

    Google Scholar 

  22. Song, B., Wang, Z., Zou, L.: An improved PSO algorithm for smooth path planning of mobile robots using continuous high-degree Bezier curve. Appl. Soft Comput. 100, 106960 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enhao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, G., Zhang, E. (2021). A Random Opposition-Based Sparrow Search Algorithm for Path Planning Problem. In: Fang, L., Chen, Y., Zhai, G., Wang, J., Wang, R., Dong, W. (eds) Artificial Intelligence. CICAI 2021. Lecture Notes in Computer Science(), vol 13070. Springer, Cham. https://doi.org/10.1007/978-3-030-93049-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93049-3_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93048-6

  • Online ISBN: 978-3-030-93049-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics