Skip to main content

Early Smoke Detection in Outdoor Space: State-of-the-Art, Challenges and Methods

  • Chapter
  • First Online:
Advances in Selected Artificial Intelligence Areas

Abstract

In recent decades, early smoke detection in outdoor environment is a hot topic due to its practical importance for a fire safety. Many researchers have contributed to this area since the 1990s. The chapter aims to follow the evolution of conventional image processing and machine learning methods based on the motion, semi-transparent, color, shape, texture and fractal features to deep learning solutions using various deep network architectures. Our experimental researches in this area have been conducted since 2010. This chapter reflects the original techniques of early smoke detection in complex outdoor scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Han, B. Lee, Flame and smoke detection method for early real-time detection of a tunnel fire. Fire Safety J. 44(7), 951–961 (2009)

    Article  Google Scholar 

  2. V. Vipin, Image processing based forest fire detection. Int. J. Emerging Technol. Adv. Eng. 2(2), 87–95 (2012)

    Google Scholar 

  3. C.Y. Lee, C.T. Lin, C.T. Hong, M.T. Su, Smoke detection using spatial and temporal analyses. Int. J. Innov. Comput. Inf. Control 8(6), 1–11 (2012)

    Google Scholar 

  4. P. Barmpoutis, K. Dimitropoulos, N. Grammalidis, Smoke detection using spatio-temporal analysis, motion modeling and dynamic texture recognition, in 22nd European of the Signal Processing Conference (2014), pp. 1078–1082

    Google Scholar 

  5. O. Gunay, K. Tasdemir, U. Toreyin, A.E. Cetin, Video based wildfire detection at night. Fire Safety J. 44, 860–868 (2009)

    Article  Google Scholar 

  6. C.-C. Ho, M.-C. Chen, Nighttime fire smoke detection system based on machine vision. Int. J. Precis. Eng. Manuf. 13, 1369–1376 (2012)

    Article  Google Scholar 

  7. G. Miranda, A. Lisboa, D. Vieira, F. Queiros, C. Nascimento, Color feature selection for smoke detection in videos, in 12th IEEE International Conference on Industrial Informatics (2014), pp. 31–36

    Google Scholar 

  8. M. Favorskaya, K. Levtin, Early video-based smoke detection in outdoor spaces by spatio-temporal clustering. Int. J. Reason.-Based Intell. Syst. 5(2), 133–144 (2013)

    Google Scholar 

  9. H. Kim, D. Ryu, J. Park, Smoke detection using GMM and Adaboost. Int. J. Comput. Commun. Eng. 3(2), 123–126 (2014)

    Article  Google Scholar 

  10. M. Favorskaya, A. Pyataeva, A. Popov, Spatio-temporal smoke clustering in outdoor scenes based on boosted random forests. Procedia Comput. Sci. 96, 762–771 (2016)

    Article  Google Scholar 

  11. S. Khan, K. Muhammad, T. Hussain, J.D. Ser, F. Cuzzolin, S. Bhattacharyya, Z. Akhtar, V.H.C. de Albuquerque, DeepSmoke: deep learning model for smoke detection and segmentation in outdoor environments. Expert Syst. Appl. 182, 115125.1–115125.10 (2021)

    Google Scholar 

  12. H. Liu, F. Lei, C. Tong, C. Cui, L. Wu, Visual smoke detection based on ensemble deep CNNs. Displays 69, 102020.1–102020.10 (2021)

    Google Scholar 

  13. Y. Jia, W. Chen, M. Yang, L. Wang, D. Liu, Q. Zhang, Video smoke detection with domain knowledge and transfer learning from deep convolutional neural networks. Opt. – Int. J. .Light Electron Opt. 240, 166947.1–166947.13 (2021)

    Google Scholar 

  14. S. Frizzi, R. Kaabi, M. Bouchouicha, J.M. Ginoux, E. Moreau, Convolutional neural network for video fire and smoke detection, in 42nd Annual Conference of the IEEE Industrial Electronics Society (2016), pp. 18429–18438

    Google Scholar 

  15. Z. Yin, B. Wan, F. Yuan, X. Xia, J. Shi, A deep normalization and convolutional neural network for image smoke detection. IEEE Access 5, 18429–18438 (2017)

    Article  Google Scholar 

  16. Q. Zhang, G. Lin, Y. Zhang, G. Xu, J. Wang, Wildland forest fire smoke detection based on Faster R-CNN using synthetic smoke images. Procedia Eng. 211, 441–446 (2018)

    Article  Google Scholar 

  17. M. Yin, C. Lang, Z. Li, S. Feng, T. Wang, Recurrent convolutional network for video-based smoke detection. Multi. Tools Appl. 8, 1–20 (2018)

    Google Scholar 

  18. Y. Jia, H. Du, H. Wang, R. Yu, L. Fan, G. Xu, O. Zhang, Automatic early smoke segmentation based on conditional generative adversarial networks. Optik – Int. J. Light Electron Opt. 193, 162879.1–62879.13 (2019)

    Google Scholar 

  19. Y. Peng, Y. Wang, Real-time forest smoke detection using hand-designed features and deep learning. Comput. Electron. Agric. 167, 105029.1–105029.18 (2019)

    Google Scholar 

  20. H. Tian, W. Li, P.O. Ogunbona, L. Wang, Detection and separation of smoke from single image frames. IEEE Trans. Image Process. 27(3), 1164–1177 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Favorskaya, D. Pyankov, A. Popov, Motion estimations based on invariant moments for frames interpolation in stereovision. Procedia Comput. Sci. 22, 1102–1111 (2013)

    Article  Google Scholar 

  22. R. Fattal, Single image dehazing. ACM Trans. Graphics 27(3),72.1–72.9 (2008)

    Google Scholar 

  23. K. He, J. Sun, X. Tang, Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011)

    Article  Google Scholar 

  24. B.U. Toreyin, Y. Dedeoglu, U. Gueduekbay, Computer vision based method for real-time fire and flame detection. Pattern Recogn. Lett. 27(1), 49–58 (2006)

    Article  Google Scholar 

  25. B.U. Toreyin, Y. Dedeoglu, A.E. Cetin, Wavelet based real-time smoke detection in video, in 13th European Signal Processing Conference (2005), pp. 1–4

    Google Scholar 

  26. H.J. Catrakis, P.E. Dimotakis, Shape complexity in turbulence. Phys. Rev. Lett. 80(5), 968–971 (1998)

    Article  Google Scholar 

  27. M. Favorskaya, M. Damov, A. Zotin, Intelligent method of texture reconstruction in video sequences based on neural networks. Int. J. Reason.-Based Intell. Syst. 5(4), 223–236 (2013)

    Google Scholar 

  28. M. Favorskaya, A. Pakhirka, A way for color image enhancement under complex luminance conditions, in Intelligent Interactive Multimedia: Systems and Services, SIST, vol. 14, ed. by T. Watanabe, J. Watada, N. Takahashi, R.J. Howlett, L.C. Jain (Springer, Berlin, 2012), pp. 63–72

    Chapter  Google Scholar 

  29. J. Gubbi, S. Marusic, M. Palaniswami, Smoke detection in video using wavelets and support vector machines. Fire Safety J. 44, 1110–1115 (2009)

    Article  Google Scholar 

  30. W. Ye, J. Zhao, S. Wang, Y. Wang, D. Zhang, Z. Yuan, Dynamic texture based smoke detection using surfacelet transform and HMT model. Fire Safety J. 73, 91–101 (2015)

    Article  Google Scholar 

  31. F. Yuan, Video-based smoke detection with histogram sequence of LBP and LBPV pyramids. Fire Safety J. 46, 132–139 (2011)

    Article  Google Scholar 

  32. H. Maruta, Y. Iida, F. Kurokawa, Smoke detection method using local binary patterns and AdaBoost, in IEEE International Symposium on Industrial Electronics (2013), pp. 1–6

    Google Scholar 

  33. K. Dimitropoulos, P. Barmpoutis, N. Grammalidis, Higher order linear dynamical systems for smoke detection in video surveillance applications. IEEE Trans. Circuits Syst. Video Technol. 27(5), 1143–1154 (2017)

    Article  Google Scholar 

  34. T. Ojala, K. Valkealahti, E. Oja, M. Pietikäinen, Texture discrimination with multidimensional distributions of signed gray-level differences. Pattern Recognit. 34(3), 727–739 (2001)

    Article  MATH  Google Scholar 

  35. T. Ojala, M. Pietikäinen, D.A. Harwood, Comparative study of texture measures with classification based on feature distributions. Pattern Recognit. 29, 51–59 (1996)

    Article  Google Scholar 

  36. T. Ojala, M. Pietikainen, T.T. Maenhaa, Multiresolution gray-scale and rotation invariant texture classification with local binary pattern. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  37. F. Yuan, A double mapping framework for extraction of shape-invariant features based on multi-scale partitions with Adaboost for video smoke detection. Pattern Recognit. 45, 4326–4336 (2012)

    Article  Google Scholar 

  38. F. Yuan, Z. Fang, S. Wu, Y. Yang, Y. Fang, A real-time video smoke detection using staircase searching based dual threshold Adaboost and dynamic analysis. IET Image Process 9, 849–856 (2015)

    Article  Google Scholar 

  39. G. Zhao, M. Pietikäinen, Dynamic texture recognition using volume local binary patterns, in Dynamical Vision, ed. By R. Vidal, A. Heyden, Y. Ma. LNCS vol. 4358 (Springer, Berlin, 2007), pp. 165–177

    Google Scholar 

  40. M. Favorskaya, A. Pyataeva, A. Popov, Verification of smoke detection in video sequences based on spatio-temporal local binary patterns. Procedia Comput. Sci. 60, 671–680 (2015)

    Article  Google Scholar 

  41. Y. Xu, Y. Quan, H. Ling, H. Ji, Dynamic texture classification using dynamic fractal analysis, in IEEE International Conference on Computer Vision (2011), pp. 1219–1226

    Google Scholar 

  42. T. Ojala, M. Pietikainen, D. Harwood, Performance evaluation of texture measures with classification based on Kullback discrimination of distributions, in 12th IAPR International Conference on Pattern Recognition, vol. 1 (1994), pp. 582–585

    Google Scholar 

  43. F. Yuan, J. Shi, X. Xia, Y. Fang, Z. Fang, T. Mei, High-order local ternary patterns with locality preserving projection for smoke detection and image classification. Inform. Sci. 372, 225–240 (2016)

    Article  Google Scholar 

  44. X. Tan, B. Triggs, Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. F. Yuan, X. Xia, J. Shi, L. Zhang, J. Huang, Learning multi-scale and multi-order features from 3D local differences for visual smoke recognition. Inf. Sci. 468, 193–212 (2018)

    Article  Google Scholar 

  46. T. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, Y. Ma, PCANet: a simple deep learning baseline for image classification. IEEE Trans. Image Process. 24, 5017–5032 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. A. Filonenko, D.C. Hernández, K. Jo, Fast smoke detection for video surveillance using CUDA. IEEE Trans Ind. Inform. 14(2), 725–733 (2018)

    Article  Google Scholar 

  48. C. Tao, J. Zhang, P. Wang, Smoke detection based on deep convolutional neural networks, in International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration, vol. 1 (2016), pp. 150–153

    Google Scholar 

  49. R.C. Gonzalez, R.E. Woods, Digital Image Processing, 3rd edn. (Prentice-Hall, Englewood Cliffs, NJ, USA, 2006)

    Google Scholar 

  50. A. Filonenko, L. Kurnianggoro, K.-H. Jo, Smoke detection on video sequences using convolutional and recurrent neural networks, in Computational Collective Intelligence, Part II, LNCS, vol. 10449, ed. by N.T. Nguyen, G.A. Papadopoulos, P. Jędrzejowicz, B. Trawiński, G. Vossen (Springer International Publishing AG, 2017), pp. 558–566

    Chapter  Google Scholar 

  51. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions. CoRR (2014), arXiv:1409.4842v1

  52. F. Chollet, Xception: deep learning with depthwise separable convolutions. CoRR (2017), arXiv:1610.02357v3

  53. F. Yuan, L. Zhang, X. Xia, B. Wan, Q. Huang, X. Li, Deep smoke segmentation. Neurocomputing 357, 248–260 (2019)

    Article  Google Scholar 

  54. J. Long, E. Shelhame, T. Darrell, Fully convolutional networks for semantic segmentation, in IEEE International Conference on Computer Vision and Pattern Recognition (2015), pp. 3431–3440

    Google Scholar 

  55. K. Muhammad, S. Khan, V. Palade, I. Mehmood, V.H.C. De Albuquerque, Edge intelligence-assisted smoke detection in foggy surveillance environments. IEEE Trans. Ind. Inform. 16(2), 1067–1075 (2020)

    Article  Google Scholar 

  56. S. Khan, K. Muhammad, S. Mumtaz, S.W. Baik, V.H.C. De Albuquerque, Energy-efficient deep CNN for smoke detection in foggy IoT environment. IEEE Internet Things J. 6(6), 9237–9245 (2019)

    Article  Google Scholar 

  57. L. He, X. Gong, S. Zhang, L. Wang, F. Li, Efficient attention based deep fusion CNN for smoke detection in fog environment. Neurocomputing 434, 224–238 (2021)

    Article  Google Scholar 

  58. G. Xu, Y. Zhang, Q. Zhang, G. Lin, Z. Wang, Y. Jia, J. Wang, Video smoke detection based on deep saliency network. Fire Safety J. 105, 277–285 (2019)

    Article  Google Scholar 

  59. S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: towards real-time object detection with region proposal networks, in Advances in Neural Information Processing Systems (2015), pp. 91–99

    Google Scholar 

  60. Y. Jia, M. Han, Category-independent object-level saliency detection, in IEEE International Conference on Computer Vision (2013), pp. 1761–1768

    Google Scholar 

  61. M. Liu, M. Zhu, Mobile video object detection with temporally-aware feature maps, in IEEE International Conference on Computer Vision and Pattern Recognition (2018), pp. 5686–5695

    Google Scholar 

  62. A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, MobileNets: efficient convolutional neural networks for mobile vision applications. CoRR (2017), arXiv:1704.04861

  63. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A.C. Berg, SSD: Single shot multibox detector, in Computer Vision – ECCV 2016, LNCS, vol. 9905, ed. by B. Leibe, J. Matas, N. Sebe, M. Welling (Springer, Cham, 2016), pp. 21–37

    Chapter  Google Scholar 

  64. Videos for Smoke detection (2020), http://imagelab.ing.unimore.it/visor/video_videosInCategory.asp?idcategory=8, Accessed 15 Jan 2020

  65. Database of Bilkent University (2020) http://signal.ee.bilkent.edu.tr/VisiFire/Demo/SmokeClips/. Accessed 15 Jan 2020

  66. DynTex. (2020), http://projects.cwi.nl/dyntex/, Accessed 15 Jan 2020

  67. Video smoke detection (2020), http://staff.ustc.edu.cn/~yfn/vsd.html, Accessed 15 Jan 2020

  68. Smoke Detection Dataset (2020), https://mivia.unisa.it/datasets/video-analysis-datasets/smoke-detection-dataset/, Accessed 15 Jan 2020

  69. V-MOTE Database (2020), http://www2.imse-cnm.csic.es/vmote/english_version/index.php, Accessed 15 Jan 2020

  70. Wildfire Observers and Smoke Recognition (2020), http://wildfire.fesb.hr/index.php?option=com_content&view=article&id=62&Itemid=71, Accessed 15 Jan 2020

  71. X. Wu, X. Lu, H. Leung, An adaptive threshold deep learning method for fire and smoke detection, in 2017 IEEE International Conference on Systems, Man, and Cybernetics (2017), pp. 1954–1959

    Google Scholar 

  72. G. Xu, Y. Zhang, Q. Zhang, G. Lin, J. Wang, Deep domain adaptation based video smoke detection using synthetic smoke images. Fire Safety J. 93, 53–59 (2017)

    Article  Google Scholar 

  73. Y. Ganin, V. Lempitsky, Unsupervised domain adaptation by backpropagation. CORR (2014), arXiv:1409.7495

  74. B. Sun, K. Saenko, Deep coral: correlation alignment for deep domain adaptation, in European Conference on Computer Vision, LNCS, vol. 9915 (. Springer, Cham, 2016), pp 443–450

    Google Scholar 

  75. M. Favorskaya, A. Pakhirka, Animal species recognition in the wildlife based on muzzle and shape features using joint CNN. Procedia Comput. Sci. 159, 933–942 (2019)

    Article  Google Scholar 

  76. I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, in 27th International Conference on Neural Information Processing Systems, vol. 2 (2014), pp. 2672–2680

    Google Scholar 

  77. Y. Xie, E. Franz, M. Chu, N. Thuerey, TempoGAN: a temporally coherent, volumetric GAN for super-resolution fluid flow. J ACM Trans. Graph. 37(4), 95.1–95.15 (2018)

    Google Scholar 

  78. F. Yuan, J. Shi, X. Xia, Y. Yang, Y. Fang, R. Wang, Sub oriented histograms of local binary patterns for smoke detection and texture classification. KSII Trans. Internet Inf. Syst. 10(4), 1807–1823 (2016)

    Google Scholar 

  79. Z. Guo, L. Zhang, D. Zhang, A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  80. S.R. Dubey, S.K. Singh, R.K. Singh, Multichannel decoded local binary patterns for content-based image retrieval. IEEE Trans. Image Process. 25(9), 4018–4032 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  81. X. Qi, R. Xiao, C.-G. Li, Y. Qiao, J. Guo, X. Tang, Pairwise rotation invariant co-occurrence local binary pattern. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2199–2213 (2014)

    Article  Google Scholar 

  82. Z. Lei, M. Pietikainen, S.Z. Li, Learning discriminant face descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 289–302 (2014)

    Article  Google Scholar 

  83. R. Mehta, K. Egiazarian, Texture classification using dense micro-block difference. IEEE Trans. Image Process 25(4), 1604–1616 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita N. Favorskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Favorskaya, M.N. (2022). Early Smoke Detection in Outdoor Space: State-of-the-Art, Challenges and Methods. In: Virvou, M., Tsihrintzis, G.A., Jain, L.C. (eds) Advances in Selected Artificial Intelligence Areas. Learning and Analytics in Intelligent Systems, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-93052-3_8

Download citation

Publish with us

Policies and ethics