Abstract
In recent decades, early smoke detection in outdoor environment is a hot topic due to its practical importance for a fire safety. Many researchers have contributed to this area since the 1990s. The chapter aims to follow the evolution of conventional image processing and machine learning methods based on the motion, semi-transparent, color, shape, texture and fractal features to deep learning solutions using various deep network architectures. Our experimental researches in this area have been conducted since 2010. This chapter reflects the original techniques of early smoke detection in complex outdoor scenes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
D. Han, B. Lee, Flame and smoke detection method for early real-time detection of a tunnel fire. Fire Safety J. 44(7), 951–961 (2009)
V. Vipin, Image processing based forest fire detection. Int. J. Emerging Technol. Adv. Eng. 2(2), 87–95 (2012)
C.Y. Lee, C.T. Lin, C.T. Hong, M.T. Su, Smoke detection using spatial and temporal analyses. Int. J. Innov. Comput. Inf. Control 8(6), 1–11 (2012)
P. Barmpoutis, K. Dimitropoulos, N. Grammalidis, Smoke detection using spatio-temporal analysis, motion modeling and dynamic texture recognition, in 22nd European of the Signal Processing Conference (2014), pp. 1078–1082
O. Gunay, K. Tasdemir, U. Toreyin, A.E. Cetin, Video based wildfire detection at night. Fire Safety J. 44, 860–868 (2009)
C.-C. Ho, M.-C. Chen, Nighttime fire smoke detection system based on machine vision. Int. J. Precis. Eng. Manuf. 13, 1369–1376 (2012)
G. Miranda, A. Lisboa, D. Vieira, F. Queiros, C. Nascimento, Color feature selection for smoke detection in videos, in 12th IEEE International Conference on Industrial Informatics (2014), pp. 31–36
M. Favorskaya, K. Levtin, Early video-based smoke detection in outdoor spaces by spatio-temporal clustering. Int. J. Reason.-Based Intell. Syst. 5(2), 133–144 (2013)
H. Kim, D. Ryu, J. Park, Smoke detection using GMM and Adaboost. Int. J. Comput. Commun. Eng. 3(2), 123–126 (2014)
M. Favorskaya, A. Pyataeva, A. Popov, Spatio-temporal smoke clustering in outdoor scenes based on boosted random forests. Procedia Comput. Sci. 96, 762–771 (2016)
S. Khan, K. Muhammad, T. Hussain, J.D. Ser, F. Cuzzolin, S. Bhattacharyya, Z. Akhtar, V.H.C. de Albuquerque, DeepSmoke: deep learning model for smoke detection and segmentation in outdoor environments. Expert Syst. Appl. 182, 115125.1–115125.10 (2021)
H. Liu, F. Lei, C. Tong, C. Cui, L. Wu, Visual smoke detection based on ensemble deep CNNs. Displays 69, 102020.1–102020.10 (2021)
Y. Jia, W. Chen, M. Yang, L. Wang, D. Liu, Q. Zhang, Video smoke detection with domain knowledge and transfer learning from deep convolutional neural networks. Opt. – Int. J. .Light Electron Opt. 240, 166947.1–166947.13 (2021)
S. Frizzi, R. Kaabi, M. Bouchouicha, J.M. Ginoux, E. Moreau, Convolutional neural network for video fire and smoke detection, in 42nd Annual Conference of the IEEE Industrial Electronics Society (2016), pp. 18429–18438
Z. Yin, B. Wan, F. Yuan, X. Xia, J. Shi, A deep normalization and convolutional neural network for image smoke detection. IEEE Access 5, 18429–18438 (2017)
Q. Zhang, G. Lin, Y. Zhang, G. Xu, J. Wang, Wildland forest fire smoke detection based on Faster R-CNN using synthetic smoke images. Procedia Eng. 211, 441–446 (2018)
M. Yin, C. Lang, Z. Li, S. Feng, T. Wang, Recurrent convolutional network for video-based smoke detection. Multi. Tools Appl. 8, 1–20 (2018)
Y. Jia, H. Du, H. Wang, R. Yu, L. Fan, G. Xu, O. Zhang, Automatic early smoke segmentation based on conditional generative adversarial networks. Optik – Int. J. Light Electron Opt. 193, 162879.1–62879.13 (2019)
Y. Peng, Y. Wang, Real-time forest smoke detection using hand-designed features and deep learning. Comput. Electron. Agric. 167, 105029.1–105029.18 (2019)
H. Tian, W. Li, P.O. Ogunbona, L. Wang, Detection and separation of smoke from single image frames. IEEE Trans. Image Process. 27(3), 1164–1177 (2018)
M. Favorskaya, D. Pyankov, A. Popov, Motion estimations based on invariant moments for frames interpolation in stereovision. Procedia Comput. Sci. 22, 1102–1111 (2013)
R. Fattal, Single image dehazing. ACM Trans. Graphics 27(3),72.1–72.9 (2008)
K. He, J. Sun, X. Tang, Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011)
B.U. Toreyin, Y. Dedeoglu, U. Gueduekbay, Computer vision based method for real-time fire and flame detection. Pattern Recogn. Lett. 27(1), 49–58 (2006)
B.U. Toreyin, Y. Dedeoglu, A.E. Cetin, Wavelet based real-time smoke detection in video, in 13th European Signal Processing Conference (2005), pp. 1–4
H.J. Catrakis, P.E. Dimotakis, Shape complexity in turbulence. Phys. Rev. Lett. 80(5), 968–971 (1998)
M. Favorskaya, M. Damov, A. Zotin, Intelligent method of texture reconstruction in video sequences based on neural networks. Int. J. Reason.-Based Intell. Syst. 5(4), 223–236 (2013)
M. Favorskaya, A. Pakhirka, A way for color image enhancement under complex luminance conditions, in Intelligent Interactive Multimedia: Systems and Services, SIST, vol. 14, ed. by T. Watanabe, J. Watada, N. Takahashi, R.J. Howlett, L.C. Jain (Springer, Berlin, 2012), pp. 63–72
J. Gubbi, S. Marusic, M. Palaniswami, Smoke detection in video using wavelets and support vector machines. Fire Safety J. 44, 1110–1115 (2009)
W. Ye, J. Zhao, S. Wang, Y. Wang, D. Zhang, Z. Yuan, Dynamic texture based smoke detection using surfacelet transform and HMT model. Fire Safety J. 73, 91–101 (2015)
F. Yuan, Video-based smoke detection with histogram sequence of LBP and LBPV pyramids. Fire Safety J. 46, 132–139 (2011)
H. Maruta, Y. Iida, F. Kurokawa, Smoke detection method using local binary patterns and AdaBoost, in IEEE International Symposium on Industrial Electronics (2013), pp. 1–6
K. Dimitropoulos, P. Barmpoutis, N. Grammalidis, Higher order linear dynamical systems for smoke detection in video surveillance applications. IEEE Trans. Circuits Syst. Video Technol. 27(5), 1143–1154 (2017)
T. Ojala, K. Valkealahti, E. Oja, M. Pietikäinen, Texture discrimination with multidimensional distributions of signed gray-level differences. Pattern Recognit. 34(3), 727–739 (2001)
T. Ojala, M. Pietikäinen, D.A. Harwood, Comparative study of texture measures with classification based on feature distributions. Pattern Recognit. 29, 51–59 (1996)
T. Ojala, M. Pietikainen, T.T. Maenhaa, Multiresolution gray-scale and rotation invariant texture classification with local binary pattern. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)
F. Yuan, A double mapping framework for extraction of shape-invariant features based on multi-scale partitions with Adaboost for video smoke detection. Pattern Recognit. 45, 4326–4336 (2012)
F. Yuan, Z. Fang, S. Wu, Y. Yang, Y. Fang, A real-time video smoke detection using staircase searching based dual threshold Adaboost and dynamic analysis. IET Image Process 9, 849–856 (2015)
G. Zhao, M. Pietikäinen, Dynamic texture recognition using volume local binary patterns, in Dynamical Vision, ed. By R. Vidal, A. Heyden, Y. Ma. LNCS vol. 4358 (Springer, Berlin, 2007), pp. 165–177
M. Favorskaya, A. Pyataeva, A. Popov, Verification of smoke detection in video sequences based on spatio-temporal local binary patterns. Procedia Comput. Sci. 60, 671–680 (2015)
Y. Xu, Y. Quan, H. Ling, H. Ji, Dynamic texture classification using dynamic fractal analysis, in IEEE International Conference on Computer Vision (2011), pp. 1219–1226
T. Ojala, M. Pietikainen, D. Harwood, Performance evaluation of texture measures with classification based on Kullback discrimination of distributions, in 12th IAPR International Conference on Pattern Recognition, vol. 1 (1994), pp. 582–585
F. Yuan, J. Shi, X. Xia, Y. Fang, Z. Fang, T. Mei, High-order local ternary patterns with locality preserving projection for smoke detection and image classification. Inform. Sci. 372, 225–240 (2016)
X. Tan, B. Triggs, Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)
F. Yuan, X. Xia, J. Shi, L. Zhang, J. Huang, Learning multi-scale and multi-order features from 3D local differences for visual smoke recognition. Inf. Sci. 468, 193–212 (2018)
T. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, Y. Ma, PCANet: a simple deep learning baseline for image classification. IEEE Trans. Image Process. 24, 5017–5032 (2015)
A. Filonenko, D.C. Hernández, K. Jo, Fast smoke detection for video surveillance using CUDA. IEEE Trans Ind. Inform. 14(2), 725–733 (2018)
C. Tao, J. Zhang, P. Wang, Smoke detection based on deep convolutional neural networks, in International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration, vol. 1 (2016), pp. 150–153
R.C. Gonzalez, R.E. Woods, Digital Image Processing, 3rd edn. (Prentice-Hall, Englewood Cliffs, NJ, USA, 2006)
A. Filonenko, L. Kurnianggoro, K.-H. Jo, Smoke detection on video sequences using convolutional and recurrent neural networks, in Computational Collective Intelligence, Part II, LNCS, vol. 10449, ed. by N.T. Nguyen, G.A. Papadopoulos, P. Jędrzejowicz, B. Trawiński, G. Vossen (Springer International Publishing AG, 2017), pp. 558–566
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions. CoRR (2014), arXiv:1409.4842v1
F. Chollet, Xception: deep learning with depthwise separable convolutions. CoRR (2017), arXiv:1610.02357v3
F. Yuan, L. Zhang, X. Xia, B. Wan, Q. Huang, X. Li, Deep smoke segmentation. Neurocomputing 357, 248–260 (2019)
J. Long, E. Shelhame, T. Darrell, Fully convolutional networks for semantic segmentation, in IEEE International Conference on Computer Vision and Pattern Recognition (2015), pp. 3431–3440
K. Muhammad, S. Khan, V. Palade, I. Mehmood, V.H.C. De Albuquerque, Edge intelligence-assisted smoke detection in foggy surveillance environments. IEEE Trans. Ind. Inform. 16(2), 1067–1075 (2020)
S. Khan, K. Muhammad, S. Mumtaz, S.W. Baik, V.H.C. De Albuquerque, Energy-efficient deep CNN for smoke detection in foggy IoT environment. IEEE Internet Things J. 6(6), 9237–9245 (2019)
L. He, X. Gong, S. Zhang, L. Wang, F. Li, Efficient attention based deep fusion CNN for smoke detection in fog environment. Neurocomputing 434, 224–238 (2021)
G. Xu, Y. Zhang, Q. Zhang, G. Lin, Z. Wang, Y. Jia, J. Wang, Video smoke detection based on deep saliency network. Fire Safety J. 105, 277–285 (2019)
S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: towards real-time object detection with region proposal networks, in Advances in Neural Information Processing Systems (2015), pp. 91–99
Y. Jia, M. Han, Category-independent object-level saliency detection, in IEEE International Conference on Computer Vision (2013), pp. 1761–1768
M. Liu, M. Zhu, Mobile video object detection with temporally-aware feature maps, in IEEE International Conference on Computer Vision and Pattern Recognition (2018), pp. 5686–5695
A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, MobileNets: efficient convolutional neural networks for mobile vision applications. CoRR (2017), arXiv:1704.04861
W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A.C. Berg, SSD: Single shot multibox detector, in Computer Vision – ECCV 2016, LNCS, vol. 9905, ed. by B. Leibe, J. Matas, N. Sebe, M. Welling (Springer, Cham, 2016), pp. 21–37
Videos for Smoke detection (2020), http://imagelab.ing.unimore.it/visor/video_videosInCategory.asp?idcategory=8, Accessed 15 Jan 2020
Database of Bilkent University (2020) http://signal.ee.bilkent.edu.tr/VisiFire/Demo/SmokeClips/. Accessed 15 Jan 2020
DynTex. (2020), http://projects.cwi.nl/dyntex/, Accessed 15 Jan 2020
Video smoke detection (2020), http://staff.ustc.edu.cn/~yfn/vsd.html, Accessed 15 Jan 2020
Smoke Detection Dataset (2020), https://mivia.unisa.it/datasets/video-analysis-datasets/smoke-detection-dataset/, Accessed 15 Jan 2020
V-MOTE Database (2020), http://www2.imse-cnm.csic.es/vmote/english_version/index.php, Accessed 15 Jan 2020
Wildfire Observers and Smoke Recognition (2020), http://wildfire.fesb.hr/index.php?option=com_content&view=article&id=62&Itemid=71, Accessed 15 Jan 2020
X. Wu, X. Lu, H. Leung, An adaptive threshold deep learning method for fire and smoke detection, in 2017 IEEE International Conference on Systems, Man, and Cybernetics (2017), pp. 1954–1959
G. Xu, Y. Zhang, Q. Zhang, G. Lin, J. Wang, Deep domain adaptation based video smoke detection using synthetic smoke images. Fire Safety J. 93, 53–59 (2017)
Y. Ganin, V. Lempitsky, Unsupervised domain adaptation by backpropagation. CORR (2014), arXiv:1409.7495
B. Sun, K. Saenko, Deep coral: correlation alignment for deep domain adaptation, in European Conference on Computer Vision, LNCS, vol. 9915 (. Springer, Cham, 2016), pp 443–450
M. Favorskaya, A. Pakhirka, Animal species recognition in the wildlife based on muzzle and shape features using joint CNN. Procedia Comput. Sci. 159, 933–942 (2019)
I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, in 27th International Conference on Neural Information Processing Systems, vol. 2 (2014), pp. 2672–2680
Y. Xie, E. Franz, M. Chu, N. Thuerey, TempoGAN: a temporally coherent, volumetric GAN for super-resolution fluid flow. J ACM Trans. Graph. 37(4), 95.1–95.15 (2018)
F. Yuan, J. Shi, X. Xia, Y. Yang, Y. Fang, R. Wang, Sub oriented histograms of local binary patterns for smoke detection and texture classification. KSII Trans. Internet Inf. Syst. 10(4), 1807–1823 (2016)
Z. Guo, L. Zhang, D. Zhang, A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)
S.R. Dubey, S.K. Singh, R.K. Singh, Multichannel decoded local binary patterns for content-based image retrieval. IEEE Trans. Image Process. 25(9), 4018–4032 (2016)
X. Qi, R. Xiao, C.-G. Li, Y. Qiao, J. Guo, X. Tang, Pairwise rotation invariant co-occurrence local binary pattern. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2199–2213 (2014)
Z. Lei, M. Pietikainen, S.Z. Li, Learning discriminant face descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 289–302 (2014)
R. Mehta, K. Egiazarian, Texture classification using dense micro-block difference. IEEE Trans. Image Process 25(4), 1604–1616 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Favorskaya, M.N. (2022). Early Smoke Detection in Outdoor Space: State-of-the-Art, Challenges and Methods. In: Virvou, M., Tsihrintzis, G.A., Jain, L.C. (eds) Advances in Selected Artificial Intelligence Areas. Learning and Analytics in Intelligent Systems, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-93052-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-93052-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-93051-6
Online ISBN: 978-3-030-93052-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)